When you rub an inflated balloon on your head and it makes your hair stand up, the force that makes the hair stand up is known as static electricity.
When the balloon is rubbed on the head, electrons from the hair atoms move into the balloon, thus making the balloon to be negatively charged and the hair positively charged due to loss of electrons.
Unlike charges attracts. Thus, when you try to pull the balloon away slowly, the positively charged hair and the negatively charged balloon will attract each other and this is usually what makes the hair stand up.
More on static electricity can be found here: brainly.com/question/24160155
Let's identify first the phases of matter inside each of those beakers. The first beaker on the left has a compact shape and has its own volume. So, that must be solid. The middle beaker has a compact shape but it takes the shape of its container. So, that must be liquid. The third beaker on the right is gas because the molecules are far away from each other.
After identifying each states, let's investigate the energy for phase change. Let's start with the arrows pointing to the right. The first arrow to the right is a phase change from solid to liquid. The intermolecular forces in a solid is the strongest among the three phases of matter. So, you would need an input of energy to break them apart into liquid. The same is true for the phase change from liquid to gas. Therefore, all the arrows pointing to the right require an input of energy.
The reverse arrows pointing to the left needs to release energy. The molecules in the gas state are free such that they can travel from one point to another easily. They have the highest amount of energy. So, if you want the molecules to come closer together, you need to remove the energy to keep them in place. Therefore, the arrows pointing to the right require removal of energy.
Distinguish the difference between physical change or chemical change.
Should be C.
Elements are listed in order of increasing atomic number from the left to the right.