L = 0 bcause it cancels itself out
Answer:
1r
Step-by-step explanation:
(5r-4)(2r-6r+4)
1(5r-4)+1(2r-6r+4)
5r-4+2r-6r+4
5r+2r-6=1r
1r-4+4
-4+4=0
1r
The equation relating length to width
L = 3W
The inequality stating the boundaries of the perimeter
LW <= 112
When you plug in what L equals in the first equation into the second equation, you get
3W * W <= 112
evaluate
3W^2 <= 112
3W <=

W <=

cm
<span><span>13−<span>6x</span></span>=<span><span><span>(<span><span>2x</span>−5</span>)</span>2</span>+3</span></span>Step 1: Simplify both sides of the equation.<span><span><span>−<span>6x</span></span>+13</span>=<span><span><span>4<span>x2</span></span>−<span>20x</span></span>+28</span></span>Step 2: Subtract 4x^2-20x+28 from both sides.<span><span><span><span>−<span>6x</span></span>+13</span>−<span>(<span><span><span>4<span>x2</span></span>−<span>20x</span></span>+28</span>)</span></span>=<span><span><span><span>4<span>x2</span></span>−<span>20x</span></span>+28</span>−<span>(<span><span><span>4<span>x2</span></span>−<span>20x</span></span>+28</span>)</span></span></span><span><span><span><span>−<span>4<span>x2</span></span></span>+<span>14x</span></span>−15</span>=0</span>Step 3: Use quadratic formula with a=-4, b=14, c=-15.<span>x=<span><span><span>−b</span>±<span>√<span><span>b2</span>−<span><span>4a</span>c</span></span></span></span><span>2a</span></span></span><span>x=<span><span><span>−<span>(14)</span></span>±<span>√<span><span><span>(14)</span>2</span>−<span><span>4<span>(<span>−4</span>)</span></span><span>(<span>−15</span>)</span></span></span></span></span><span>2<span>(<span>−4</span>)</span></span></span></span><span>x=<span><span><span>−14</span>±<span>√<span>−44</span></span></span><span>−<span>8</span></span></span></span>