1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alenkinab [10]
4 years ago
12

What is the value of the expression 30 + [(6÷3) + (3 + 4)]

Mathematics
2 answers:
sleet_krkn [62]4 years ago
7 0
30+[(6÷3)+(3+4)]=39 you're welcome
Leokris [45]4 years ago
6 0
30+((6÷3)+(3+4))
30+(2+7)
30+9
39
You might be interested in
Heres a free question for a couple of points.
saul85 [17]
Thank you for this!!
8 0
4 years ago
Read 2 more answers
50 / (-8) / (-5) = ?
ser-zykov [4K]

<em>☽------------❀-------------☾</em>

<em>Hi there!</em>

<em>~</em>

<em></em>50 \div (-8) \div (-5) = 1.25<em></em>

<em>❀Hope this helped you!❀</em>

<em>☽------------❀-------------☾</em>

<em></em>

8 0
4 years ago
"If a = − 9 and b = − 6, show that (a−b) ≠ (b−a)."
denis-greek [22]

Answer:

Step-by-step explanation:

LHS  a - b = -9 - (-6) = -9 +6 = -3

RHS  b-a = -6 - (- 9) =  -6 +9 = 3

as LHS not equal to RHS

a-b not equal to b-a

Thus proven

7 0
3 years ago
Find the area of the surface. The part of the sphere x2 + y2 + z2 = a2 that lies within the cylinder x2 + y2 = ax and above the
sineoko [7]

Answer:

The area of the sphere in the cylinder and which locate above the xy plane is \mathbf{ a^2 ( \pi -2)}

Step-by-step explanation:

The surface area of the sphere is:

\int \int \limits _ D \sqrt{(\dfrac{\partial z}{\partial x})^2 + ( \dfrac{\partial z}{\partial y}^2 + 1 )   } \ dA

and the cylinder x^2 + y^2 =ax can be written as:

r^2 = arcos \theta

r = a cos \theta

where;

D = domain of integration which spans between \{(r, \theta)| - \dfrac{\pi}{2} \leq \theta  \leq \dfrac{\pi}{2}, 0 \leq r \leq acos \theta\}

and;

the part of the sphere:

x^2 + y^2 + z^2 = a^2

making z the subject of the formula, then :

z = \sqrt{a^2 - (x^2 +y^2)}

Thus,

\dfrac{\partial z}{\partial x} = \dfrac{-2x}{2 \sqrt{a^2 - (x^2+y^2)}}

\dfrac{\partial z}{\partial x} = \dfrac{-x}{ \sqrt{a^2 - (x^2+y^2)}}

Similarly;

\dfrac{\partial z}{\partial y} = \dfrac{-2y}{2 \sqrt{a^2 - (x^2+y^2)}}

\dfrac{\partial z}{\partial y} = \dfrac{-y}{ \sqrt{a^2 - (x^2+y^2)}}

So;

\sqrt{(\dfrac{\partial z}{\partial x})^2 + ( \dfrac{\partial z}{\partial y}^2 + 1 )}  = \sqrt{\begin {pmatrix} \dfrac{-x}{\sqrt{a^2 -(x^2+y^2)}} \end {pmatrix}^2 + \begin {pmatrix} \dfrac{-y}{\sqrt{a^2 - (x^2+y^2)}}   \end {pmatrix}^2+1}\sqrt{(\dfrac{\partial z}{\partial x})^2 + ( \dfrac{\partial z}{\partial y}^2 + 1 )}  = \sqrt{\dfrac{x^2+y^2}{a^2 -(x^2+y^2)}+1}

\sqrt{(\dfrac{\partial z}{\partial x})^2 + ( \dfrac{\partial z}{\partial y}^2 + 1 )}  = \sqrt{\dfrac{x^2+y^2+a^2 -(x^2+y^2)}{a^2 -(x^2+y^2)}}

\sqrt{(\dfrac{\partial z}{\partial x})^2 + ( \dfrac{\partial z}{\partial y}^2 + 1 )}  = \sqrt{\dfrac{a^2}{a^2 -(x^2+y^2)}}

\sqrt{(\dfrac{\partial z}{\partial x})^2 + ( \dfrac{\partial z}{\partial y}^2 + 1 )}  = {\dfrac{a}{\sqrt{a^2 -(x^2+y^2)}}

From cylindrical coordinates; we have:

\sqrt{(\dfrac{\partial z}{\partial x})^2 + ( \dfrac{\partial z}{\partial y}^2 + 1 )}  = {\dfrac{a}{\sqrt{a^2 -r^2}}

dA = rdrdθ

By applying the symmetry in the x-axis, the area of the surface will be:

A = \int \int _D \sqrt{ (\dfrac{\partial z}{\partial x})^2+ (\dfrac{\partial z}{\partial y})^2+1} \ dA

A = \int^{\dfrac{\pi}{2}}_{-\dfrac{\pi}{2}} \int ^{a cos \theta}_{0} \dfrac{a}{\sqrt{a^2 -r^2 }} \ rdrd \theta

A = 2\int^{\dfrac{\pi}{2}}_{0} \begin {bmatrix} -a \sqrt{a^2 -r^2} \end {bmatrix}^{a cos \theta}_0 \ d \theta

A = 2\int^{\dfrac{\pi}{2}}_{0} \begin {bmatrix} -a \sqrt{a^2 - a^2cos^2 \theta} + a \sqrt{a^2 -0}} \end {bmatrix} d \thetaA = 2\int^{\dfrac{\pi}{2}}_{0} \begin {bmatrix} -a \ sin \theta +a^2 } \end {bmatrix} d \theta

A = 2a^2 [ cos \theta + \theta ]^{\dfrac{\pi}{2} }_{0}

A = 2a^2 [ cos \dfrac{\pi}{2}+ \dfrac{\pi}{2} - cos (0)- (0)]

A = 2a^2 [0 + \dfrac{\pi}{2}-1+0]

A = a^2 \pi - 2a^2

\mathbf{A = a^2 ( \pi -2)}

Therefore, the area of the sphere in the cylinder and which locate above the xy plane is \mathbf{ a^2 ( \pi -2)}

6 0
3 years ago
Is (10,-2) a solution of the system? yes or no
ValentinkaMS [17]

Answer: A. Yes

Step-by-step explanation: It is a solution to the system.

3 0
3 years ago
Read 2 more answers
Other questions:
  • Make a table of ordered pairs for the equation.
    12·1 answer
  • 15 POINTS<br> find the difference between the points (-1, 8) and (5,2) on a graph
    13·1 answer
  • F(x) = x + 3<br> g(x) = 2x2 - 4<br> Find (f ·g)(x).
    14·1 answer
  • Which answer describes the type of sequence?
    10·1 answer
  • Jane works at The Bottling Company. She needs to put 8,500 bottles of water into cases. So far she has put 2,136 in cases. How m
    15·1 answer
  • Multiple Choice Which one of the follow-
    5·1 answer
  • Cheyenne needs to write a linear equation that is parallel to the x-axis. Which equation could she write?
    5·1 answer
  • HELP ME WITH MY MATH SO I’LL MARK U THE BRAINLIEST!
    14·1 answer
  • Someone help!!! 18 pts :((
    8·2 answers
  • Name the types of angles shown.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!