<em>☽------------❀-------------☾</em>
<em>Hi there!</em>
<em>~</em>
<em></em>
<em></em>
<em>❀Hope this helped you!❀</em>
<em>☽------------❀-------------☾</em>
<em></em>
Answer:
Step-by-step explanation:
LHS a - b = -9 - (-6) = -9 +6 = -3
RHS b-a = -6 - (- 9) = -6 +9 = 3
as LHS not equal to RHS
a-b not equal to b-a
Thus proven
Answer:
The area of the sphere in the cylinder and which locate above the xy plane is 
Step-by-step explanation:
The surface area of the sphere is:

and the cylinder
can be written as:


where;
D = domain of integration which spans between 
and;
the part of the sphere:

making z the subject of the formula, then :

Thus,


Similarly;


So;





From cylindrical coordinates; we have:

dA = rdrdθ
By applying the symmetry in the x-axis, the area of the surface will be:





![A = 2a^2 [ cos \theta + \theta ]^{\dfrac{\pi}{2} }_{0}](https://tex.z-dn.net/?f=A%20%3D%202a%5E2%20%5B%20cos%20%5Ctheta%20%2B%20%5Ctheta%20%5D%5E%7B%5Cdfrac%7B%5Cpi%7D%7B2%7D%20%7D_%7B0%7D)
![A = 2a^2 [ cos \dfrac{\pi}{2}+ \dfrac{\pi}{2} - cos (0)- (0)]](https://tex.z-dn.net/?f=A%20%3D%202a%5E2%20%5B%20cos%20%5Cdfrac%7B%5Cpi%7D%7B2%7D%2B%20%5Cdfrac%7B%5Cpi%7D%7B2%7D%20-%20cos%20%280%29-%20%280%29%5D)
![A = 2a^2 [0 + \dfrac{\pi}{2}-1+0]](https://tex.z-dn.net/?f=A%20%3D%202a%5E2%20%5B0%20%2B%20%5Cdfrac%7B%5Cpi%7D%7B2%7D-1%2B0%5D)


Therefore, the area of the sphere in the cylinder and which locate above the xy plane is 
Answer: A. Yes
Step-by-step explanation: It is a solution to the system.