Answer:
a) 0.0167
b) 0
c) 5.948
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 6.16 ounces
Standard Deviation, σ = 0.08 ounces
We are given that the distribution of fill volumes of bags is a bell shaped distribution that is a normal distribution.
Formula:
a) Standard deviation of 23 bags

b) P( fill volume of 23 bags is below 5.95 ounces)
P(x < 5.95)
Calculation the value from standard normal z table, we have,
c) P( fill volume of 23 bags is below 6 ounces) = 0.001
P(x < 6) = 0.001
Calculation the value from standard normal z table, we have,


If the mean will be 5.948 then the probability that the average of 23 bags is below 6.1 ounces is 0.001.
1,000 x 0.04 = 40
250+ 40 = 290
That week she made $290
Answer:
L = ∫₀²ᵖⁱ √((1 − sin t)² + (1 − cos t)²) dt
Step-by-step explanation:
Arc length of a parametric curve is:
L = ∫ₐᵇ √((dx/dt)² + (dy/dt)²) dt
x = t + cos t, dx/dt = 1 − sin t
y = t − sin t, dy/dt = 1 − cos t
L = ∫₀²ᵖⁱ √((1 − sin t)² + (1 − cos t)²) dt
Or, if you wish to simplify:
L = ∫₀²ᵖⁱ √(1 − 2 sin t + sin²t + 1 − 2 cos t + cos²t) dt
L = ∫₀²ᵖⁱ √(3 − 2 sin t − 2 cos t) dt