8a2-10ab+15b+10 Explaintion:
here we can say that there is no external force on fisherman and dock
so here we will use momentum conservation theory
As per momentum conservation
initial momentum of fisherman + boat = final momentum of fisherman + boat

now we will have



so the speed of boat and fisherman will be 1.16 m/s
Answer:
C. 30.6m
Explanation:
To find the height of the tower, we are to use Newtons law of motion to solve this problem. Since the penny is falling from the top of the tower, it is acted by the acceleration due to gravity. The formula to be used is:

Where H is the height of the tower, t is the time taken to hit the ground, u is the initial velocity and g is the acceleration due to gravity.
Given that, t = 2.5 s, g =9.8 m/s², u = 0 m/s (at the top of tower)

1. Delta, is formed by constructive erosion.
Given Information:
Length of wire = 132 cm = 1.32 m
Magnetic field = B = 1 T
Current = 2.2 A
Required Information:
(a) Torque = τ = ?
(b) Number of turns = N = ?
Answer:
(a) Torque = 0.305 N.m
(b) Number of turns = 1
Explanation:
(a) The current carrying circular loop of wire will experience a torque given by
τ = NIABsin(θ) eq. 1
Where N is the number of turns, I is the current in circular loop, A is the area of circular loop, B is the magnetic field and θ is angle between B and circular loop.
We know that area of circular loop is given by
A = πr²
where radius can be written as
r = L/2πN
So the area becomes
A = π(L/2πN)²
A = πL²/4π²N²
A = L²/4πN²
Substitute A into eq. 1
τ = NI(L²/4πN²)Bsin(θ)
τ = IL²Bsin(θ)/4πN
The maximum toque occurs when θ is 90°
τ = IL²Bsin(90)/4πN
τ = IL²B/4πN
torque will be maximum for N = 1
τ = (2.2*1.32²*1)/4π*1
τ = 0.305 N.m
(b) The required number of turns for maximum torque is
N = IL²B/4πτ
N = 2.2*1.32²*1)/4π*0.305
N = 1 turn