1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
igor_vitrenko [27]
3 years ago
8

A projectile of mass 9.6 kg is launched from the ground with an initial velocity of 12.4 m/s at angle of 54° above the horizonta

l. At some time after its launch, an explosion splits the projectile into two pieces. One piece, of mass 6.5 kg, is observed at 1.42 seconds after the launch to be at a height of 5.9 m and at a horizontal distance of 13.6 m from the launch point. Find the location of the second fragment at that same instant of time.
Physics
1 answer:
Temka [501]3 years ago
5 0

Answer:

The location is at (3.535, 1.162) m

Solution:

As per the question:

Mass of the projectile, m = 9.6 kg

Initial velocity, v = 12.4 m/s

Angle, \theta = 54^{\circ}

Mass of one fragment, m = 6.5 kg

Time taken by the fragment, t = 1.42 s

Height of the fragment, y = 5.9 m

Horizontal distance, x = 13.6 m

Now,

To determine the location of the second fragment:

Horizontal Range, R = \frac{v^{2}sin2\theta}{g}

R = \frac{12.4^{2}sin2(54)}{9.8} = 14.92\ m

Time of flight, t' = \frac{2vsin\theta}{g} = \frac{2\times 12.4sin108}{9.8}= 2.406\ s

Now, for the fragments:

Mass of the other fragment, m' = M - m = 9.6 - 6.5 = 3.1 kg

Distance traveled horizontally:

s_{x} = vcos\theta = 12.4cos54^{\circ}\times 1.42 = 10.35\ m

Distance traveled vertically:

s_{y} = vcos\theta - \frac{1}{2}gt^{2}

s_{y} = 12.4sin54^{\circ}\times 1.42 -  \frac{1}{2}\times 9.8\times 1.42^{2} = 14.25 - 9.88 = 4.37\ m

Now,

s_{x} = \frac{mx + m'x'}{M}

10.35= \frac{6.5\times 13.6 + 3.1x'}{9.6}

x' = 3.535 m

Similarly,

s_{y} = \frac{my + m'y'}{M}

4.37= \frac{6.5\times 5.9 + 3.1y'}{9.6} = 1.162\ m

The location of the other fragment is at (3.535, 1.162)

You might be interested in
The illustration shows a rollercoaster and indicates four different positions the car might be at as it moves along the track. A
Vanyuwa [196]

Answer:

Point a

Explanation:

The potential energy of an object is given by :

P = mgh

m is mass, g is acceleration due to gravity, h is height above ground level.

Potential energy is directly proportional to the position of an object.

In the attached figure, the maximum height is shown at point (a). It means it will have maximum potential energy at a as compared to b,c and d.

5 0
3 years ago
Two horizontal metal plates, each 10.0 cm square, are aligned 1.00 cm apart with one above the other. They are given equal-magni
Ber [7]

Answer:

a) motion is PARABOLIC, b) positive particle is accelerated towards the negative plate,  c)  x = 6.19 10⁹ m

Explanation:

This exercise looks at the motion of a positively charged particle in an electric field.

a) Since the field is vertical the acceleration in this direction is

            F = m a

the electric force is

           F = q E

we substitute

          q E = m a

           a = qE / m

the mass of the particle is m = 2.00 10-16 kg

           a = 1.6 10⁻¹⁹ 2.02 10³ / 2.00 10⁻¹⁶ kg

           a = 1,616 m / s²

           

on the x-axis there are no relationships because there are no forces.

Since the particle has velocities in both axes, its motion is PARABOLIC,

b) the positive particle is accelerated towards the negative plate,

The field is descending, for which the event is down

c) where  hit the particle on the x-axis

they indicate that the particle leaves the center of the negative plate, for which we will fix our reference system at this point.

Let's find the components of the initial velocity.

           sin θ = v_{oy} / v

           cos θ = v₀ₓ / v

           v_{oy} = v₀ sin θ

           v₀ₓ = v₀ cos θ

           v_{oy) = 1.02 10⁵ sin 37 = 0.6139 10⁵ m / s

           v₀ₓ = 1.02 10⁵ cos 37 = 0.8146 10⁵ m / s

Let's find the time it takes to hit the negative plate

            y = y₀I + v_{oy} t + ½ a and t2

in this case the positions are y = y₀ = 0 and the accelerations

a = - 1,616m/s2,

we substitute

            0 = 0 + v_{oy} t - ½ a_y t²

            v_{oy}= ½ a_y t

            t = 2v_{oy} / a_y

let's calculate

           t = 2 0.6139 10⁵ / 1.616

           t = 7.597 10⁴s

in this time the particle travels a horizontal distance

           x = v₀ₓ t

           x = 0.8145 10⁵ 7.597 10⁴

           x = 6.19 10⁹ m

the particle falls off the plate

4 0
2 years ago
How can we tell when forces are acting on an object (science)
iren [92.7K]

If an object's speed changes, or if it changes the direction it's moving in,
then there must be forces acting on it. There is no other way for any of
these things to happen.

Once in a while, there may be <em><u>a group</u></em> of forces (two or more) acting on
an object, and the group of forces may turn out to be "balanced".  When
that happens, the object's speed will remain constant, and ... if the speed
is not zero ... it will continue moving in a straight line.  In that case, it's not
possible to tell by looking at it whether there are any forces acting on it. 


4 0
3 years ago
An object of mass 6.00 kg falls with an aceleration of 8.00 m/s2. The magnitude of air resitance must be ____ N
allsm [11]
Using Newton's Second Law, we can find the air resistance. We know the net force is equal to mass times acceleration.F_{net} = m*a = (6.00kg)(8.00 \frac{m}{s^2}) = 48N &#10;&#10;F_{g} - F_{d} = 48N&#10;&#10;48N = (6.00kg)(9.81m/s^2) - F_{d} &#10;&#10;F_{d} = 10.86N


7 0
3 years ago
The AC voltage source is connected to an inductor and a resistor in series. If the frequency of the source is increased the curr
DaniilM [7]

Answer:

If the frequency of the source is increased the current in the circuit will decrease.

Explanation:

The current through the circuit is given as;

I = \frac{V}{Z}

Where;

V is the voltage in the AC circuit

Z is the impedance

Z = \sqrt{R^2 + X_L^2}

Where;

R is the resistance

X_L is the inductive reactance

X_L = ωL = 2πfL

where;

L is the inductance

f is the frequency of the source

Finally, the current in the circuit is given as;

I = \frac{V}{\sqrt{R^2 + (2\pi fL)^2} }

From the equation above, an increase in frequency (f) will cause a decrease in current (I).

Therefore, If the frequency of the source is increased the current in the circuit will decrease.

5 0
3 years ago
Other questions:
  • a bullet is dropped from the same height when another bullet is fired horizontally they will hit the ground
    12·1 answer
  • A 56 kg astronaut stands on a bathroom scale inside a rotating circular space station. The radius of the space station is 250 m.
    9·1 answer
  • Can anyone explain how to do this to me? It is due tomorrow at 9:30am. Thanks.
    8·1 answer
  • One of the main differences between the intaglio and the relief printing processes is that with intaglio the ink ________ the su
    15·1 answer
  • The weight of an ice sheet can cause continental lithosphere to sink into the underlying asthenosphere due to ____.
    11·1 answer
  • The electric resistance in a length of wire is doubled when the wire is _________.
    6·1 answer
  • Is the speed of light faster in helium or air?
    7·1 answer
  • michelle withdrew 120$ from her bank account. she now has 3345$ in her account qrite and solve an equation to find how much mone
    7·2 answers
  • Which of the following properties is the same for all electromagnetic radiation in a vacuum?
    13·1 answer
  • A slanted surface used to raise an object is a(n)​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!