They hibernate to a point, they build dens when it gets cold to stay out of the freezing cold but don't sleep all winter
Answer:
roof bow upwards
Explanation:
The top of the roof of the small ranger vehicle will bow upwards. This is as a result of gas pressure on the soft ragtop roof.
- As air begins to fill the vehicle, pressure resonates in all direction proportionally.
- The pressure of the air will be greater than that which the roof can withstand and this forces the roof sky up.
- It is a common scene when we see roof of ragtop vehicles bowing upwards into the sky.
-- 'Ca' (Calcium) is an element.
-- The proton has a positive charge.
-- Nuclear fusion results in the synthesis of atoms of new elements.
-- H₂O (water) is a chemical compound.
-- Nuclear fission is a decay of the nucleus.
-- The atomic number of an element is the number of protons
in each atom of it.
-- I suppose you're using the Greek letter <span>η ('eta', not 'nu')
to represent the neutron.
-- I suppose you're using ' e ' to represent the electron.
</span>
Reflection from such a rough surface is called diffuse reflection and appears matte
Answer:
The shortest braking distance is 35.8 m
Explanation:
To solve this problem we must use Newton's second law applied to the boxes, on the vertical axis we have the norm up and the weight vertically down
On the horizontal axis we fear the force of friction (fr) that opposes the movement and acceleration of the train, write the equation for each axis
Y axis
N- W = 0
N = W = mg
X axis
-Fr = m a
-μ N = m a
-μ mg = ma
a = μ g
a = - 0.32 9.8
a = - 3.14 m/s²
We calculate the distance using the kinematics equations
Vf² = Vo² + 2 a x
x = (Vf² - Vo²) / 2 a
When the train stops the speed is zero (Vf = 0)
Vo = 54 km/h (1000m/1km) (1 h/3600s)= 15 m/s
x = ( 0 - 15²) / 2 (-3.14)
x= 35.8 m
The shortest braking distance is 35.8 m