The relationship between the masses of the object and the gravitational force between them is a direct relationship
Explanation:
The gravitational force between two objects is given by the equation:
where
is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between them
We observe that:
- The gravitational force is proportional to the masses of the two objects, m1 and m2, so if the masses increase, the force will increase as well (so, this is a direct relationship)
- The gravitational force is inversely proportional to the square of the separation between the objects, so if the distance is increased, the force will decrease (so, this is an inverse relationship)
Learn more about gravitational force here:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
Answer:
Explanation:
I got everything but i. Don't know why but it's eluding me. So let's do everything but that.
a. PE = mgh so
PE = (2.5)(98)(14) and
PE = 340 J
b.
so
and
KE = 250 J
c. TE = KE + PE so
TE = 340 + 250 and
TE = 590 J
d. PE at 8.7 m:
PE = (2.5)(9.8)(8.7) and
PE = 210 J
e. The KE at the same height:
TE = KE + PE and
590 = KE + 210 so
KE = 380 J
f. The velocity at that height:
and
so
v = 17 m/s
g. The velocity at a height of 11.6 m (these get a bit more involed as we move forward!). First we need to find the PE at that height and then use it in the TE equation to solve for KE, then use the value for KE in the KE equation to solve for velocity:
590 = KE + PE and
PE = (2.5)(9.8)(11.6) so
PE = 280 then
590 = KE + 280 so
KE = 310 then
and
so
v = 16 m/s
h. This one is a one-dimensional problem not using the TE. This one uses parabolic motion equations. We know that the initial velocity of this object was 0 since it started from the launcher. That allows us to find the time at which the object was at a velocity of 26 m/s. Let's do that first:
and
26 = 0 + 9.8t and
26 = 9.8t so the time at 26 m/s is
t = 2.7 seconds. Now we use that in the equation for displacement:
Δx =
and filling in the time the object was at 26 m/s:
Δx = 0t +
so
Δx = 36 m
i. ??? In order to find the velocity at which the object hits the ground we would need to know the initial height so we could find the time it takes to hit the ground, and then from there, sub all that in to find final velocity. In my estimations, we have 2 unknowns and I can't seem to see my way around that connundrum.
Change of a liquid to a gas
the wavelength equation is
speed (of light in this
case)= wavelength (m) x frequency
3x10^8m/s / .07m = f
frequency= 4 285 714 286
hertz
b) Total distance= 4.8 km
(4,800 m)
Speed = 3x10^8 m/s
d=st
t= d/s
t= 4,800 m/3x10^8m/s
<span>t= 1x10^-5 seconds</span>