Answer:
The answer is "effective stress at point B is 7382 ksi
"
Explanation:
Calculating the value of Compressive Axial Stress:
![\to \sigma y =\frac{F}{A} = \frac{4 F}{( p d ^2 )} = \frac{(4 x ( - 40000 \ lbf))}{[ p \times (1 \ in)^2 ]} = - 50.9 \ ksi \\](https://tex.z-dn.net/?f=%5Cto%20%5Csigma%20y%20%20%3D%5Cfrac%7BF%7D%7BA%7D%20%3D%20%5Cfrac%7B4%20F%7D%7B%28%20p%20d%20%5E2%20%29%7D%20%3D%20%5Cfrac%7B%284%20x%20%28%20-%2040000%20%5C%20lbf%29%29%7D%7B%5B%20p%20%5Ctimes%20%281%20%5C%20in%29%5E2%20%5D%7D%20%3D%20-%2050.9%20%5C%20ksi%20%5C%5C)
Calculating Shear Transverse:



![\to \sigma' =[ s y^2 +3( t \times y^2 + t yz^2 )] \times \frac{1}{2}\\\\](https://tex.z-dn.net/?f=%5Cto%20%5Csigma%27%20%3D%5B%20s%20y%5E2%20%2B3%28%20t%20%5Ctimes%20y%5E2%20%2B%20t%20yz%5E2%20%29%5D%20%5Ctimes%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5C)
![= [ (-50.9)^2 +3((63.7)^2 +(0.17)^2 )] \times \frac{1}{2}\\\\=[2590.81+ 3(4057.69)+0.0289]\times \frac{1}{2}\\\\=[2590.81+12,173.07+0.0289] \times \frac{1}{2}\\\\=14763.9089\times \frac{1}{2}\\\\ = 7381.95445 \ ksi\\\\ = 7382 \ ksi](https://tex.z-dn.net/?f=%3D%20%5B%20%28-50.9%29%5E2%20%2B3%28%2863.7%29%5E2%20%2B%280.17%29%5E2%20%29%5D%20%5Ctimes%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5C%3D%5B2590.81%2B%203%284057.69%29%2B0.0289%5D%5Ctimes%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5C%3D%5B2590.81%2B12%2C173.07%2B0.0289%5D%20%5Ctimes%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5C%3D14763.9089%5Ctimes%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5C%20%3D%207381.95445%20%5C%20ksi%5C%5C%5C%5C%20%3D%207382%20%5C%20ksi)
Answer:
Energy lost due to friction is 22 J
Explanation:
Mass of the ball m = 4 kg
Initially velocity of ball v = 6 m/sec
So kinetic energy of the ball 

Now due to friction velocity decreases to 5 m/sec
Kinetic energy become

Therefore energy lost due to friction = 72 -50 = 22 J
Answer:
k = 17043.5 N/m = 17.04 KN/m
Explanation:
First we need to find the force applied by safe pn the spring:
F = Weight of Safe
F = mg
where,
F = Force Applied by the safe on the spring = ?
m = mass of safe = 800 kg
g = 9.8 m/s²
Therefore,
F = (800 kg)(9.8 m/s²)
F = 7840 N
Now, using Hooke's Law:
F = kΔx
where,
K = Spring Constant = ?
Δx = compression = 46 cm = 0.46 m
Therefore,
7840 N = k (0.46 m)
k = 7840 N/0.46 m
<u>k = 17043.5 N/m = 17.04 KN/m</u>