1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lady bird [3.3K]
4 years ago
7

Which four equations can be used to solve for acceleration

Physics
1 answer:
emmainna [20.7K]4 years ago
8 0

The four equations for acceleration are obtained from the three equations of motion and from second law of motion.

Explanation:

Acceleration is defined as the rate of change of velocity with respect to time. So the change in velocity with respect to time can be determined using the three equations of motions.

So from the first equation of motion, v = u + at , we can determine the value of acceleration if time taken, final and initial velocity is known. The equation can be re-written as a = \frac{v-u}{t}

Similarly, from the second equation of motion, s = ut + 1/2 at², we can determine the equation for acceleration as a = 2*\frac{s-ut}{t^{2} }

So this is second equation for acceleration.

Then from the third equation of motion, v^{2}- u^{2} = 2* a *s

the acceleration equation is determined as a = \frac{v^{2}-u^{2}  }{2s}

In addition to these three equation, another equation is present to determine the acceleration with respect to force from the Newton's second law of motion. F = Mass × acceleration. From this, acceleration = Force/mass.

So, these are the four equations for acceleration.

You might be interested in
A seagull flies at a velocity of 9.00 m/s straight into the wind.
RideAnS [48]

a)If it takes the bird 18.0 minutes to fly 6 km away from the earth, the wind's speed will be 4 m/s.

b) The bird would need 7 minutes and 42 seconds to fly back 6 kilometers if he turned around and flew with the wind.

c)Compared to the 133.33 seconds it would take without the wind, the overall round-trip time is affected by the wind.

<h3>What is velocity?</h3>

The change of distance with respect to time is defined as speed. Speed is a scalar quantity. It is a time-based component. Its unit is m/sec.

The given data in the problem is

A seagull flies at a velocity,\rm v_{SA}  = 9 \ m/sec

The time the bird takes,t=18.0 min

The distance traveled relative to the earth = 6.00 km

a)

The seagull's relative velocity with reference to the ground as;

\rm v_{sg} = \frac{6.00 \times 10^3 \ m }{(20 min) \times \frac{60 s }{1 \ min}} \\\\ v_{sg}= 5.00 \ m/sec

Air velocity with reference to the ground is;

\rm v_{AG}= v_{SG}-v_{SA} \\\\ v_{AG} = 5.00 \ m/sec - 9.00 \ m/sec \\\\ v_{AG} = -4.00 \ m/sec

b)

If the bird turns around and flies with the wind, The time will he take to return 6.00 km is;

\rm v_{SG}=v_{SA}+v_{AG} \\\\ v_{SG}=-900 \ m/sec +(-4.00 \ m/sec) \\\\ v_{SG}= -13.00 \ m/sec

The time the bird takes;

\rm t = \frac{x_{SG}}{v_{SG}} \\\\ t = \frac{6.00 \times 10^3 \ m }{13.00 \ m/sec } \\\\ t = 462 m/sec \\\\ t = 7  \ min \  and  \ 42  \ sec

c)\

The total round-trip time compared to what it would be with no wind. is;

\rm  t = 20 \ min( \frac{60 \ sec }{1 \ min} )+ 462 \ sec \\\\ t = 1200 \ sec +6 462 \ ec \\\\ t= 1662 \ sec

The time for the round trip is;

\rm  t = \frac{12 \times 10^ 3 }{ 9 \ m/sec }  \\\\ t  = 1333.33 \ sec

Hence the wind's speed, the time bird would need to fly back the total round-trip time will be  4 m/s, 7 minutes and 42 seconds and 1333.33 sec.

To learn more about the velocity, refer to the link: brainly.com/question/862972.

#SPJ1

4 0
2 years ago
A car traveling on a flat (unbanked), circular track accelerates uniformly from rest with a tangential acceleration of 1.90 m/s2
Ahat [919]

Answer:

Approximately 0.608 (assuming that g = 9.81\; \rm N\cdot kg^{-1}.)

Explanation:

The question provided very little information about this motion. Therefore, replace these quantities with letters. These unknown quantities should not appear in the conclusion if this question is actually solvable.

  • Let m represent the mass of this car.
  • Let r represent the radius of the circular track.

This answer will approach this question in two steps:

  • Step one: determine the centripetal force when the car is about to skid.
  • Step two: calculate the coefficient of static friction.

For simplicity, let a_{T} represent the tangential acceleration (1.90\; \rm m \cdot s^{-2}) of this car.

<h3>Centripetal Force when the car is about to skid</h3>

The question gave no information about the distance that the car has travelled before it skidded. However, information about the angular displacement is indeed available: the car travelled (without skidding) one-quarter of a circle, which corresponds to 90^\circ or \displaystyle \frac{\pi}{2} radians.

The angular acceleration of this car can be found as \displaystyle \alpha = \frac{a_{T}}{r}. (a_T is the tangential acceleration of the car, and r is the radius of this circular track.)

Consider the SUVAT equation that relates initial and final (tangential) velocity (u and v) to (tangential) acceleration a_{T} and displacement x:

v^2 - u^2 = 2\, a_{T}\cdot x.

The idea is to solve for the final angular velocity using the angular analogy of that equation:

\left(\omega(\text{final})\right)^2 - \left(\omega(\text{initial})\right)^2 = 2\, \alpha\, \theta.

In this equation, \theta represents angular displacement. For this motion in particular:

  • \omega(\text{initial}) = 0 since the car was initially not moving.
  • \theta = \displaystyle \frac{\pi}{2} since the car travelled one-quarter of the circle.

Solve this equation for \omega(\text{final}) in terms of a_T and r:

\begin{aligned}\omega(\text{final}) &= \sqrt{2\cdot \frac{a_T}{r} \cdot \frac{\pi}{2}} = \sqrt{\frac{\pi\, a_T}{r}}\end{aligned}.

Let m represent the mass of this car. The centripetal force at this moment would be:

\begin{aligned}F_C &= m\, \omega^2\, r \\ &=m\cdot \left(\frac{\pi\, a_T}{r}\right)\cdot r = \pi\, m\, a_T\end{aligned}.

<h3>Coefficient of static friction between the car and the track</h3>

Since the track is flat (not banked,) the only force on the car in the horizontal direction would be the static friction between the tires and the track. Also, the size of the normal force on the car should be equal to its weight, m\, g.

Note that even if the size of the normal force does not change, the size of the static friction between the surfaces can vary. However, when the car is just about to skid, the centripetal force at that very moment should be equal to the maximum static friction between these surfaces. It is the largest-possible static friction that depends on the coefficient of static friction.

Let \mu_s denote the coefficient of static friction. The size of the largest-possible static friction between the car and the track would be:

F(\text{static, max}) = \mu_s\, N = \mu_s\, m\, g.

The size of this force should be equal to that of the centripetal force when the car is about to skid:

\mu_s\, m\, g = \pi\, m\, a_{T}.

Solve this equation for \mu_s:

\mu_s = \displaystyle \frac{\pi\, a_T}{g}.

Indeed, the expression for \mu_s does not include any unknown letter. Let g = 9.81\; \rm N\cdot kg^{-1}. Evaluate this expression for a_T = 1.90\;\rm m \cdot s^{-2}:

\mu_s = \displaystyle \frac{\pi\, a_T}{g} \approx 0.608.

(Three significant figures.)

7 0
3 years ago
Bob and John are pulling in different directions. If Bob is pulling to the right with a force of 10N, and John is pulling to the
kykrilka [37]

Answer:

A) -2N

B) Left

C) -0.5

Explanation:

A) -12 + 10

B) More force is acted on in that direction

C) Net force/Mass (-2/4)

5 0
3 years ago
What is measurement ?...​
mariarad [96]

Answer:

the size, length, or amount of something, as established by measuring.

3 0
2 years ago
Read 2 more answers
A glass of water at 20°C or a glass of water at 80°C explain
KiRa [710]

Answer:

1. A glass of water at 80°C because the more heat it will recieve, the more temperature increases. Heat is a sort of energy so the more it is heated, the more energy the water will recieve. So in comparison to 20°C, 80°C has more energy in it because it has a higher temperature.

2. An aluminium can at 30°C because the more heat it will recieve, the more temperature increases. Heat is a sort of energy so the more it is heated, the more energy the aluminium will recieve. So in comparison to 20°C, 30°C has more energy in it because it has a higher temperature.

Brainliest pweaseee if it is the correct answer! <3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

6 0
2 years ago
Other questions:
  • How might you use a rope and pulley to move a wagon up a ramp?
    7·1 answer
  • At the outer edge of a rotating space habitat, 130 m from the center, the rotational acceleration is g. What is the rotational a
    10·1 answer
  • A monatomic ideal gas has its volume decreases by a factor of five while its pressure is held constant. Part A What is the chang
    10·1 answer
  • Nikola Tesla and Thomas Edison were both pioneers when it came providing electricity to the people. Edison had hired the genius
    8·1 answer
  • hows a map of Olivia's trip to a coffee shop. She gets on her bike at Loomis and then rides south 0.9mi to Broadway. She turns e
    10·1 answer
  • The 49-g arrow is launched so that it hits and embeds in a 1.45 kg block. The block hangs from strings. After the arrow joins th
    5·1 answer
  • In which scenario will the two objects have the greatest gravitational force
    13·2 answers
  • Describe a situation where an object would have potential energy transformed into kinetic energy?
    12·2 answers
  • Thanks + BRAINLIST <br><br> Need correct answer ASAP
    8·1 answer
  • PLEASE I NEED THIS NOW ITS EASY I JUST DIDNT STUDY
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!