The velocity of tennis racket after collision is 14.96m/s
<u>Explanation:</u>
Given-
Mass, m = 0.311kg
u1 = 30.3m/s
m2 = 0.057kg
u2 = 19.2m/s
Since m2 is moving in opposite direction, u2 = -19.2m/s
Velocity of m1 after collision = ?
Let the velocity of m1 after collision be v
After collision the momentum is conserved.
Therefore,
m1u1 - m2u2 = m1v1 + m2v2


Therefore, the velocity of tennis racket after collision is 14.96m/s
Answer:
Why do metals conduct heat so well? The electrons in metal are delocalised electrons and are free moving electrons so when they gain energy (heat) they vibrate more quickly and can move around, this means that they can pass on the energy more quickly.
Explanation:
a. Net force is mass times acceleration (Newton's second law).
∑F = ma
∑F = (5.0 kg) (2.0 m/s²)
∑F = 10 N
b. The net force is the sum of the individual forces.
10 N = F − 5 N
F = 15 N
c. Friction force here is mgμ.
mgμ = 5 N
(5.0 kg) (10 m/s) μ = 5 N
μ = 0.1
An example of a negative incentive for producers is the
sharp increase in production costs. Producers are the one who manage the production
costs and even the production budget. Anything that relates the production
department is entitled to the management of production producers.
There is what we called positive and negative incentives and
both of these can affect consumers and producers. Positive incentives are those
situations which will give a certain outcome that will benefit the producers,
for example, during the peak season there will be a high demand of products, and
this gives the chance of producers to demand a higher price from the consumers,
in this situation, there will be a big chance of increase sales. A sharp increase in production costs is a
loss for the producers. If there will be
an increase in production costs, the budget will be greatly affective and even
though it is not a peak season, there’s a big chance also to increase prices
which we know, consumers are not fond of.