Explanation:
<h3>p = mv</h3>
- <em>p</em> denotes momentum
- <em>m</em> denotes mass
- <em>v</em> denotes velocity
→ p = 3 kg × 3 m/s
→ <u>p</u><u> </u><u>=</u><u> </u><u>9</u><u> </u><u>kg</u><u>.</u><u>m</u><u>/</u><u>s</u>
<u>Option</u><u> </u><u>D</u><u> </u><u>is</u><u> </u><u>corre</u><u>ct</u><u>.</u>
Answer: The free - body diagrams for blocks A and B. frictionless surface by a constant horizontal force F = 100 N. Find the tension in the cord between the 5 kg and 10 kg blocks. The string that attaches it to the block of mass M2 passes over a frictionless pulley of negligible mass. The coefficient of kinetic friction Hk between M.
Explanation: Hope this helped :)
The De Broglie wavelength of the electron is

And we can use De Broglie's relationship to find its momentum:

Given

, with m being the electron mass and v its velocity, we can find the electron's velocity:

This velocity is quite small compared to the speed of light, so the electron is non-relativistic and we can find its kinetic energy by using the non-relativistic formula:
Answer:

Explanation:
We are given that


d=1.9 cm=
Using 1m=100 cm
We have to find the electric field strength.

Using the formula





Mass of electron,m

Substitute the values

