<span>Data:
mass =
110-g bullet
d = 0.636 m
Force =
13500 + 11000x - 25750x^2, newtons.
a) Work, W
W = ∫( F* )(dx) =∫[13500+ 11000x - 25750x^2] (dx) =
W = 13500x + 5500x^2 - 8583.33 x^3 ] from 0 to 0.636 =
W = 8602.6 joule
b) x= 1.02 m
</span><span><span>W = 13500x + 5500x^2 - 8583.33 x^3 ] from</span> 0 to 1.02
W = 10383.5
c) %
[W in b / W in a] = 10383.5 / 8602.6 = 1.21 => W in b is 21% more than work in a.
</span>
Last One.... If Im not Wrong!
Burning of Fossil Fuels, Increase the CO2 And therefore the Green Effect!!
Answer:
he wavelength is different (greater) than the wavelength of the incident photon
Explanation:
The Compton effect is the scattering of a photon by an electron, this process is analyzed using the conservation of momentum, in which we assume that initially the electron is at rest and after the collision it recedes, therefore the energy of the incident photon decreases and consequently its wavelength changes
To complete the sentence we use the wavelength is different (greater) than the wavelength of the incident photon
<span>b. less climatic variation between the summer and winter seasons in the middle and high latitudes
As the tilt becomes higher (approaches 24 degrees) there is greater variation between the summer and winter months, due to the fact that the tilt toward the sun in the summer and away from the sun in the winter are more pronounced. </span>
Gay Lussac's Law states: At a constant volume Pressure<span> divided by </span>Temperature<span> is</span>constant<span> P/T = k Together these three laws form the foundation of the Ideal </span>Gas<span>Law. Objective: Students will </span>investigate<span> Gay Lussac's Law relating </span>pressure<span> and</span>temperature<span> at a </span><span>constant temperature.</span>