Answer:
The kinetic energy of the merry-go-round is
.
Explanation:
Given:
Weight of the merry-go-round, 
Radius of the merry-go-round, 
the force on the merry-go-round, 
Acceleration due to gravity, 
Time given, 
Mass of the merry-go-round is given by

Moment of inertial of the merry-go-round is given by

Torque on the merry-go-round is given by

The angular acceleration is given by

The angular velocity is given by

The kinetic energy of the merry-go-round is given by
