Which excerpt are you talking about?
Answer:
ω₂=1.20
Explanation:
Given that
mass of the turn table ,M= 15 kg
mass of the ice ,m= 9 kg
radius ,r= 25 cm
Initial angular speed ,ω₁ = 0.75 rad/s
Initial mass moment of inertia



Final mass moment of inertia



Lets take final speed of the turn table after ice evaporated =ω₂ rad/s
Now by conservation angular momentum
I₁ ω₁ =ω₂ I₂

ω₂=1.20
Answer: 3P/2
Explanation: Let the resistance of the bulbs be R.
now lets consider a Voltage V is supplied to the parallel circuit such that

V=IR
both single bulb( bulb 3) and the two bulbs ( bulb 1 and bulb 2) are provided the same Voltage
( as the voltage remains same in parallel circuit)
we can calculate the Current across both circuits
At Bulb 3
Current 1=V/R
Power1=Voltage * Current1
Power1=V*V/R
Power1=P
At Bulb 1 and Bulb 2
Total Resistance= R+R=2R

Power2=Voltage * Current2


Answer:
a The kinetic energy is 
b The height of the center of mass above that position is
Explanation:
From the question we are told that
The length of the rod is 
The mass of the rod
The angular speed at the lowest point is 
Generally moment of inertia of the rod about an axis that passes through its one end is
Substituting values


Generally the kinetic energy rod is mathematically represented as



From the law of conservation of energy
The kinetic energy of the rod during motion = The potential energy of the rod at the highest point
Therefore



Cool down the Slowest
B. Seawater, because it heats up slower and gives away heat slower than sand.
Read the question wrong the first time