Answer:
b option mass will not change based on location while weight will changr based on gravitational pull
bcz in the formula of weight w=mg
so w is directly proportional to g
Answer:
Thickness of Styrofoam insulation is 0.02741 m.
Explanation:
Given that,
Height = 0.25 m
Depth = 0.5 m
Power = 400 W
Temperature = 33°C
We need to calculate the area of Styrofoam
Using formula of area

Put the value into the formula


Inner surface temperature of freezer

Outer surface temperature of freezer

We need to calculate the thickness of Styrofoam insulation
Using Fourier law,


Put the value into the formula


Hence, Thickness of Styrofoam insulation is 0.02741 m.
Answer:

Explanation:
Given:
Length of cylinder is, L = 0.27 m
Outer radius of cylinder is, r_out = 1.12×10^{-2} m
Inner radius of cylinder is, r_in = 3.9×10^{-3} m
Mass of person, m = 60 kg
Young's modulus , Y = 9.4×10^9 N/m2
(a)
Compressional strain of humerous is,



![= \frac{(60 kg)(9.8 m/s2 )}{(\pi)[( 1.12\times 10^{-2})^2 - (3.9\times 10^{-3} m)^2] (9.4\times 10^9 N/m2 )}[tex] [tex]= 1.80\times 10^{-4} m](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B%2860%20kg%29%289.8%20m%2Fs2%20%29%7D%7B%28%5Cpi%29%5B%28%201.12%5Ctimes%2010%5E%7B-2%7D%29%5E2%20-%20%283.9%5Ctimes%2010%5E%7B-3%7D%20m%29%5E2%5D%20%289.4%5Ctimes%2010%5E9%20N%2Fm2%20%29%7D%5Btex%5D%3C%2Fp%3E%3Cp%3E%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Btex%5D%3D%201.80%5Ctimes%2010%5E%7B-4%7D%20m)
(b) Let assume that humerous is compressed by ΔL
Since, strain = ΔL/L0

Thus,


Explanation:
Effective nuclear charge is defined as he net positive charge experienced by an electron in an atom. It is termed "effective" because the shielding effect of electrons prevents higher orbital electrons from experiencing the full nuclear charge of the nucleus due to the repelling effect of inner-layer electrons.
The 1s is the closest shell to the nucleus of an therefore maximum nuclear charge is experienced. The formula for effective nuclear charge is:
Zeff = Z – S
where
Z = the number of protons in the nucleus, and
S = the shielding constant, the average number of electrons between the nucleus and the electron.
Hence, the energy required to remove an electron from the 1s orbital is the strongest.
Kinematics is the branch of Physics that deals with
the mathematical methods of describing motion.