The acceleration of the rock is the gravitational acceleration due to earth which is around 9.8 m/s^2. As the rock travels upwards it is working against the constant force of gravity and when it reaches the top it is the force of gravity that will cause a cause in the direction of the rocks velocity and cause it to accelerate towards earth. Using the equation a = F/m, the acceleration due to gravity exerts a force per unit mass on an object causing the object to accelerate, anything above earth surface will therefore have an external gravitational force action on it (in terms of projectile motion). So at the top of the rocks trajectory, the acceleration of the rock will be g (9.8) as a constant force is gravity is exerted on the rock throughout its path.
Answer:
Hi... Potential energy is converted to kinetic energy and kinetic energy is converted to potential energy
If the two forces act in the same direction, their resultant is 13N .
If they act in opposite directions, their resultant is 3N .
These are the limits. The resultant is always between 3N and 13N.
So (B), (C), and (D) (3N, 10N, and 13N are possible.)
<em>(A)</em> 2N is not possible.
The ideal spring equation is
Stretch = K times Force .
This says that the stretch is directly proportional to the force.
In simple English, that means that if you double the force, then
you double the stretch, and if you multiply the force by π or
any other number, you multiply the stretch by the same number.
So you can always write a proportion for a spring:
Stretch₁ / Force₁ = Stretch₂ / Force₂ .
Part A:
In Part-A of this question, the force is increased to (2.5 / 2.0) = 1.25 times .
So the stretch is also increased to 1.25 times .
(1.25) x (6.1 cm) = 7.625 cm .
Answer:
The industry standard life span is about 25 to 30 years, and that means that some panels installed at the early end of the current boom aren't long from being retired is the operating life time of a PV module .