1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adell [148]
3 years ago
13

A 39.3 g glass thermometer reads 22.0oC before it

Physics
1 answer:
ratelena [41]3 years ago
6 0

Answer:

44.85C

Explanation:

Let the specific heat of glass thermometer be 0.84 J/g°C

Let the specific heat of water be 4.186 j/g °C

Let the water density be 1kg/L

136 mL of water = 0.136L of water = 0.136 kg of water = 136 g of water

Since the change of temperature on the glass thermometer is 43.6 - 22 = 21.6 C. We can then calculate the heat energy absorbed to it:

E = m_gc_g \Delta T = 39.3 * 0.84 * 21.6 = 713.06 J

Assume no energy is lost to outside, by the law of energy conservation, this heat energy would come from water

E = m_wc_w(T - T_w) = 713.06

136*4.186(T - 43.6) = 713.06

T - 43.6 = \frac{713.06}{136*4.186} = 1.25

T = 1.25 + 43.6 = 44.85C

You might be interested in
If it takes 726 watts of power to move an object 36 m in 14 s, what is the mass of the object?
Pavel [41]

Answer:

i hope the pic helps u dear

4 0
3 years ago
Read 2 more answers
An accelerating voltage
ki77a [65]
Accelerating voltage<span> is the difference in potential between the filament and the anode,and it can be varied between 5 KeV and 30 KeV on the S-500 and between 2 KeV and 30 KeV on the S-450. As the </span>voltage<span> is increased, the electrons travel with higher velocity and are more energetic.</span>
8 0
3 years ago
g Incandescent bulbs generate visible light by heating up a thin metal filament to a very high temperature so that the thermal r
Naddika [18.5K]

Answer:

2577 K

Explanation:

Power radiated , P = σεAT⁴ where σ = Stefan-Boltzmann constant = 5.6704 × 10⁻⁸ W/m²K⁴, ε = emissivity of bulb filament = 0.8, A = surface area of bulb = 30 mm² = 30 × 10⁻⁶ m² and T = operating temperature of filament.

So, T = ⁴√(P/σεA)

Since P = 60 W, we substitute the vales of the variables into T. So,

T = ⁴√(P/σεA)

= ⁴√(60 W/(5.6704 × 10⁻⁸ W/m²K⁴ × 0.8 × 30 × 10⁻⁶ m²)

= ⁴√(60 W/(136.0896 × 10⁻¹⁴ W/K⁴)

= ⁴√(60 W/(13608.96 × 10⁻¹⁶ W/K⁴)

= ⁴√(0.00441 × 10¹⁶K⁴)

= 0.2577 × 10⁴ K

= 2577 K

6 0
3 years ago
How much mass should be attached to a vertical ideal spring having a spring constant (force constant) of 39.5 n/m so that it wil
mrs_skeptik [129]
The frequency of a simple harmonic oscillator such as a spring-mass system is given by
f= \frac{1}{2 \pi}   \sqrt{ \frac{k}{m} }
where 
k is the spring constant
m is the mass attached to the spring.

Re-arranging the formula, we get:
m= \frac{k}{4 \pi^2 f^2}
and since we know the constant of the spring:
k=39.5 N/m
and the frequency of oscillation:
f=1.00 Hz
we can find the value of the mass attached to it:
m= \frac{39.5 Hz}{4 \pi^2 (1.00 Hz)^2} = 1.00 kg
7 0
3 years ago
In an RC circuit, what fraction of the final energy is stored in an initially uncharged capacitor after it has been charging for
4vir4ik [10]

Answer:

The  fraction fraction of the final energy is stored in an initially uncharged capacitor after it has been charging for 3.0 time constants is  

      k  = 0.903

Explanation:

From the question we are told that

     The time  constant  \tau  =  3

The potential across the capacitor can be mathematically represented as

     V  =  V_o  (1 -  e^{- \tau})

Where V_o is the voltage of the capacitor when it is fully charged

    So   at  \tau  =  3

     V  =  V_o  (1 -  e^{- 3})

     V  =  0.950213 V_o

   Generally energy stored in a capacitor is mathematically represented as

             E = \frac{1}{2 } * C  * V ^2

In this equation the energy stored is directly proportional to the the square of the potential across the capacitor

Now  since capacitance is  constant  at  \tau  =  3

        The  energy stored can be evaluated at as

         V^2 =  (0.950213 V_o )^2

       V^2 =  0.903  V_o ^2

Hence the fraction of the energy stored in an initially uncharged capacitor is  

      k  = 0.903

4 0
4 years ago
Other questions:
  • Hello Peeps can y'all PLEASE HELP ME? I need to graduate!
    10·1 answer
  • Which earth material is liquid at room temperature
    5·2 answers
  • Which law describes the interactions between charged particles when they are not in contact?
    11·2 answers
  • What is one of the most noticeable effects of the moon on earth??
    8·1 answer
  • An object starts from rest and accelerates at a rate of 3.0 m/s/s for 6.0 seconds. The velocity at the end of the 6.0 seconds is
    9·1 answer
  • How come when an object has a greater mass, it has a greater Inertia? and the other way around.
    9·1 answer
  • . 1 A voltmeter has high resistance. Explain why?​
    14·2 answers
  • A 12-kg hammer strikes a nail at a velocity of and comes to rest in a time interval of 8.0 ms. (a) What is the impulse given to
    9·1 answer
  • A car starts from rest and after 7.0 seconds it is moving at 42 m/s. What is the car's average acceleration?
    10·1 answer
  • All 2023 ariya ac synchronous drive motors produce ____% torque at 0 mph for impressive off-the-line acceleration and smooth cru
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!