Answer: There are
molecules in 63.00 g of 
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:

1 mole of
contains =
molecules
Thus 3.5 moles of
contains =
molecules.
There are
molecules in 63.00 g of 
In 1 molecule of the compound C₆H₁₂O₂ there are 12 moles of hydrogen atoms
<h3>Further explanation</h3>
Given
C₆H₁₂O₂ compound
Required
moles of Hydrogen
Solution
In a compound, there is a mole ratio of the constituent elements.
The empirical formula is the smallest comparison of atoms of compound forming elements.
A molecular formula is a formula that shows the number of atomic elements that make up a compound.
In the C₆H₁₂O₂ compound, there are 3 forming elements: C, H and O
The number of each element is indicated by its subscript
C: 6 moles
H = 12 moles
O = 2 moles
Answer:
The law is given by the following equation: PV = nRT, where P = pressure, V = volume, n = number of moles, R is the universal gas constant, which equals 0.0821 L-atm / mole-K, and T is the temperature in Kelvin.
Explanation: