Answer:
- <u>C₂H₄</u> (option number 4)
Explanation:
A hydrocarbon with a <em>double bond</em> in its carbon skeleton is an alkene and has the general form:
-
.
This is, the number of hydrogen atoms is twice the number of carbon atoms.
On the other hand, alkanes have only single bonds, and the compounds with a triple bond in its carbon skeleton are alkynes.
Review each choice:
1) <u>C₃H₈:</u>
- In this case, the number of hydrogen atoms is 2×3 + 2 = 6 + 2 = 8, which is corresponds to an alkane, not an alkene.
2)<u> C₂H₆</u>
- For this, the number of hydrogen atoms is 2 × 2 + 2 = 4 + 2 = 6. Again an alkane, not alkene.
3) <u>CH₄</u>
- Hydrogen atoms: 1 × 2 + 2 = 4 ⇒ an alkane
4) <u>C₂H₄ </u>
- Hydrogen atoms: 2 × 2 = 4. This is precisely the relation for an alkene, so this is the hydrocarbon that has a double bond in its carbon skeleton.
- The chemical formula may be writen as CH₂ = CH₂, to show the double bond.
So, this is the correct answer.
5) <u>C₂H₂</u>
- Hydrogen atoms: 2 × 2 - 2 = 4 - 2 = 2. This relation of carbon and hydrogen atoms corresponds to a compound with triple bond, i.e an alkyne: CH≡CH.
MgBr2(aq) is an ionic compound which will have the releasing of 2 Br⁻ ions ions in water for every molecule of MgBr2 that dissolves.
MgBr2(s) --> Mg+(aq) + 2 Br⁻(aq)
[Br⁻] = 0.51 mol MgBr2/1L × 2 mol Br⁻ / 1 mol MgBr2 = 1.0 M
The answer to this question is [Br⁻] = 1.0 M
Actually, we can answer the problem even without the first statement. All we have to do is write the reaction for the production of sulfur trioxide.
2 S + 3 O₂ → 2 SO₃
The stoichiometric calculations is as follows:
7 g S * 1 mol/32.06 g S = 0.218 mol S
Moles O₂ needed = 0.218 mol S * 3 mol O₂/2 mol S = 0.3275 mol O₂
Since the molar mas of O₂ is 32 g/mol,
Mass of O₂ needed = 0.3275 mol O₂ * 32 g/mol = 10.48 g O₂
I can’t see the picture for some reason