Answer:
so far from what i've seen its been 80 mil
Explanation:
the power of GoogIe
Answer:
the answer should be henry's law
Answer:
T2 = 260 K
Explanation:
<em>Given data:</em>
P1 = 150.0 k Pa
T1 = (-23+ 273.15) K = 250.15 K
V1 = 1.75 L
P2 = 210.0 kPa
V2 = 1.30 L
<em>To find:</em>
T2 = ?
<em>Formula:</em>


<em>Calculation:</em>
T2 = (210.0 kPa) x (1.30 L) x (250.15 K) / (150.0 kPa) x (1.75 L)
T2 = 260 K
Radioactive material undergoes 1st order decay kinetics.
For 1st order decay, half life = 0.693/k
where k = rate constant
k = 0.693/half life = 0.693/8.02 = 0.0864 day-1
Now, for 1st order reaction,
k =

Given: t = 6.01d, initial conc. = 5mg
∴0.0864 =

∴ final conc. = 2.975 mg