Answer:
Stationary
20N
Explanation:
From the graph, we see that the body traveling is on a fixed position. Therefore, it is a stationary body.
The graph given is a position - time curve.
This curve depict a body changing position with given time.
Since the line of the curve is on a single position, the body is not changing position with the passage of time therefore, it is a stationary object.
B. 20N
From Newton's third law of motion we understand that "action and reaction force are equal but oppositely directed".
Since the person is exerting a force of 20N on the balance.
So, the reaction force by the balance is 20N upward.
Answer:
a) 
b) The second runner will win
c) d = 10.54m
Explanation:
For part (a):

For part (b) we will calculate the amount of time that takes both runners to cross the finish line:


Since it takes less time to the second runner to cross the finish line, we can say the she won the race.
For part (c), we know how much time it takes the second runner to win, so we just need the position of the first runner in that moment:
X1 = V1*t2 = 239.46m Since the finish line was 250m away:
d = 250m - 239.46m = 10.54m
The angle of inclination is calculated using sin
function,
sin θ = 5 m / 20 m = 0.25
θ = 14.4775°
<span>The net force exerted is then calculated:
F net = m g sin θ = 20 * 9.8 * 0.25 </span>
F net = 49N
<span>Work is product of net force and distance:
W = F net * d = 49 * 20 </span>
<span>Work = 980 J </span>
Answer:
d. )directed upward.
Explanation:
As the electron has a negative charge, when under the influence of an electric field, is subject to an electric force, which direction is the opposite to the direction of the electric field.
This is because the electric field has the same direction that the force on a positive test charge at the same point.
As the electric field points vertically downward, the electric force on the electron (a negative charge) points vertically upward.
So, the statement d. is the one that results to be true.