(G)-->Iron and steel industry is called a heavy industry because all the raw material as well as finished goods are heavy and bulky entailing heavy transportation costs. Iron ore, coking coal and limestone are required in the ratio of 4:2:1 approximately. Some quantity of manganese is also required to harden the steel.
(H)-->Sodium is very reactive in nature. When exposed in air, it automatically forms Na2O. When it is put in water it reacts vigorously and starts burning on water. Due to the above reasons Sodium is called an active metal.
(I)-->Down the group, the effective nuclear charge experienced by valence electrons is decreasing because the outermost electrons are far away from the nucleus. Thus, these electrons can be lost easily by the element to form positive ions. Hence, the chemical reactivity of metals increases on going down a group.
(J)-->While moving from top to bottom in a group of the periodic table, the reactivity of non- metals decreases. While moving from top to bottom in a group of non- metals, the atomic size increases with the additional number of shells and the force of attraction between the nucleus and valence shell decreases.
A jet fighter flies from the airbase A 300 km East to the point M. Then 350 km at 30° West of North.
It means : at 60° North of West. So the distance from the final point to the line AM is :
350 · cos 60° = 350 · 0.866 = 303.1 km
Let`s assume that there is a line N on AM.
AN = 125 km and NM = 175 km.
And finally jet fighter flies 150 km North to arrive at airbase B.
NB = 303.1 + 150 = 453.1 km
Then we can use the Pythagorean theorem.
d ( AB ) = √(453.1² + 125²) = √(205,299.61 + 15,625) = 470 km
Also foe a direction: cos α = 125 / 470 = 0.266
α = cos^(-1) 0.266 = 74.6°
90° - 74.6° = 15.4°
Answer: The distance between the airbase A and B is 470 km.
Direction is : 15.4° East from the North.
Clever problem.
We know that the beat frequency is the DIFFERENCE between the frequencies of the two tuning forks. So if Fork-A is 256 Hz and the beat is 6 Hz, then Fork-B has to be EITHER 250 Hz OR 262 Hz. But which one is it ?
Well, loading Fork-B with wax increases its mass and makes it vibrate SLOWER, and when that happens, the beat drops to 5 Hz. That means that when Fork-B slowed down, its frequency got CLOSER to the frequency of Fork-A ... their DIFFERENCE dropped from 6 Hz to 5 Hz.
If slowing down Fork-B pushed it CLOSER to the frequency of Fork-A, then its natural frequency must be ABOVE Fork-A.
The natural frequency of Fork-B, after it gets cleaned up and returns to its normal condition, is 262 Hz. While it was loaded with wax, it was 261 Hz.
Here's the tool you need. You can't answer the question without this:
"1 watt"
means
"1 joule of energy, generated, used, or moved, every second".
So 60 watts = 60 joules per second
Total energy generated,
used, or moved = (power) x (time).
580 joules = (60 watts) x (time)
Divide each side
by (60 watts): Time = (580 joules) / (60 joules/sec)
= (9 and 2/3) seconds .
We will use this equation:
s = 1/2*a*t^2 + v0*t + s0
where:
s = space traveled
a = acceleration
t = time
v0 = initial speed
s0 = initial space
In this case::
v0 = 0
s0 = 0
So our equation will look like that now:
s = 1/2 * a * t^2
let's calculate the acceleration first of all:
a = (vf - vi) / t
where vf is the final speed and vi is the initial speed. t is the time.
a = (25m/s) / 10s = 2.5 m/s^2
Now we can calculate the space:
s = 1/2 * (2.5 m/s^2) * (10s)^2 = 125m
---
Hope it was helpful! Have a great day.