1. An 8-kilogram bowling ball is rolling in a straight line toward you. If its momentum is 16 kg•m/s, how fast is it traveling?
momentum = mass x velocity
16 = 8 x velocity
velocity = 2 m/s
2.A beach ball is rolling in a straight line toward you at a speed of 0.5 m/sec. Its momentum is 0.25 kg•m/s. What is the mass of the beach ball?
momentum = mass x velocity
0.25 = m x 0.5
mass = 0.5 kg
3.A 4,000-kilogram truck travels in a straight line at 10.0 m/s. What is its momentum?
Momentum = (mass) x (speed) = (4,000) x (10) = 40,000 kilogram-meters/second
4.A 1,400-kilogram car is also traveling in a straight line. Its momentum is equal to that of the truck in the previous question. What is the velocity of the car?
40,000 kilogram-meters/second = 1400 x velocity
velocity = 28.6 m/s
5.Which would take more force to stop in 10 seconds: an 8.0-kilogram ball rolling in a straight line at a speed of 0.2 m/s or a 4.0-kilogram ball rolling along the same path at a speed of 1.0 m/s?
F1 = 8 x 0.2 / 10 = 0.16 N
F2 = 4 x 1.0 / 10 = 0.4 N ----> take more force
6.The momentum of a car traveling in a straight line at 20 m/s is 24,500 kg•m/s. What is the car’s mass?
24500 = mass x 20
mass = 1225 kg
7.Another pitcher throws the same baseball in a straight line. Its momentum is 2.1 kg•m/s. What is the velocity of the ball?
2.1 = 0.5 x velocity
velocity = 4.2 m/s
8 A 1-kilogram turtle crawls in a straight line at a speed of 0.01 m/s. What is the turtle’s momentum?
momentum = 1 x 0.01 = 0.01 kg m/s
Answer:
v = 8.8 m /s
Explanation:
For listener and source going away from each other the formula of Doppler effect is as follows

V is velocity of sound , v is velocity of listner and source of sound
f₀ is apparent frequency and f is real frequency
V = 343 , v = ? ,f = 210 , f₀ = 221
Put these value in the relation above
[/tex]
v = 8.8 m /s
Answer:
Induced emf will be 0.468 volt
Explanation:
We have given diameter of wire d = 15.3 cm
So radius 
So area 
Change in magnetic field dB = 0.26 - 0.77 = -0.51 T
Time for change in magnetic field dt = 0.26 sec
We know that emf is given by 
Answer:
A) g = 9.751 m/s², B) h = 2.573 10⁴ m
Explanation:
The angular velocity of a pendulum is
w = √ g / L
Angular velocity and frequency are related.
w = 2π f
f = 1 / 2π √ g / L
A) with the initial data we can look for the pendulum length
L = 1 /4π² g / f²
L = 1 /4π² 9,800 / 0.3204²
L = 2.4181 m
The length of the pendulum does not change, let's look for the value of g for the new location
g = 4π² f² L
g = 4π² 0.3196² 2.4181
g = 9.75096 m / s²
g = 9.751 m/s²
B) The value of the acceleration of gravity can be found with the law of universal gravitation
F = G m M /
²
And Newton's second law
W = m g
W = F
G m M /
² = mg
g = G M /
²
² = G M / g
Let's calculate
² = 6.67 10⁻¹¹ 5.98 10²⁴ /9.75096
R = √ 4.0905 10¹³ = √ 40.9053 10¹²
R = 6.395726 10⁶ m
The height above sea level is
h = R - [tex]R_{e}[/tex
h = (6.395726 -6.37) 10⁶
h = 0.0257256 106
h = 2.573 10⁴ m
Answer:
When an unbalanced force acts on a body the side with the greater force's dircetion makes the object move along its direction
Also to find the net force acting on the bofldy you can subtract the two force acting on the body
In case of balanced force the net force will always be 0