Answer:
F = 2.49 x 10⁻⁹ N
Explanation:
The electrostatic force between two charged bodies is given by Colomb's Law:

where,
F = Electrostatic Force = ?
k = colomb's constant = 9 x 10⁹ N.m²/C²
q₁ = charge on proton = 1.6 x 10⁻¹⁹ C
q₂ = second charge = 1.4 C
r = distace between charges = 0.9 m
Therefore,

<u>F = 2.49 x 10⁻⁹ N</u>
<span>Mass of the ball is m = 0.10kg
Initial speed of the Ball v = 15m/s
a. When the ball is at maximum height the velocity is 0
Momentum of ball = mass x velocity
Momentum = 0.10kg x 0 = 0
b. Getting the maximum height,
Using the conservation of energy equation KEinitial = mgh
1/2mVin^2 = mgh => h = v^2/2g
h = 15^2/2x9.8 = 11.48m => Half Height h = 5.96m
Applying the conservation of energy equation at halfway V^2 = 2gh
V = square root of (2x9.8x5.96) => V = square root of (116.816)
So the velocity at the half way V = 10.81 m/s
Momentum M = m x V => M = 0.10 x 10.81 => M = 1.081kg-m/s</span>
Answer:
(a). Z = 54.54 ohm
(b). R = 36 ohm
(c). The circuit will be Capacitive.
Explanation:
Given data
I = 2.75 A
Voltage = 150 V
rad = 48.72°
(a). Impedance of the circuit is given by


Z = 54.54 ohm
(b). We know that resistance of the circuit is given by

Put the values of Z &
in above formula we get

R = 36 ohm
(c). Since the phase angle is negative so the circuit will be Capacitive.
Answer:
162.8 K
Explanation:
initial current = io
final current, i = io/8
Let the potential difference is V.
coefficient of resistivity, α = 43 x 10^-3 /K
Let the resistance is R and the final resistance is Ro.
The resistance varies with temperature
R = Ro ( 1 + α ΔT)
V/i = V/io (1 + α ΔT )
8 = 1 + 43 x 10^-3 x ΔT
7 = 43 x 10^-3 x ΔT
ΔT = 162.8 K
Thus, the rise in temperature is 162.8 K.
I think the answer is B true