1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
podryga [215]
3 years ago
14

A student throws a small rock straight upwards. The rock rises to its highest point and then falls back down. How does the speed

of the rock at 2m on the way down compare with its speed at 2m on the way up?
Physics
1 answer:
Vladimir [108]3 years ago
5 0

Answer:

we assume that it starts with a velocity of 10m/s. At 2m height above ground level, its velocity decreases at 3m above ground level

for its way down the velocity at 3m on its way down is more than its velocity at 2m on its way down.

Explanation:

A student throws a small rock straight upwards. The rock rises to its highest point and then falls back down. How does the speed of the rock at 2m on the way down compare with its speed at 2m on the way up?

It decreases in speed on its way down and increases in speed on its way down.

it decreases in speed on its way up because the the vertical motion is against the earths gravitational pull on an object to the earth's center

.It increases in speed on his way down because its under the influence of gravity

from newton's equation of motion we can check by

using V^2=u^2+2as

we assume that it starts with a velocity of 10m/s. At 2m height above ground level, its velocity decreases at 3m above ground level

for its way down the velocity at 3m on its way down is more than its velocity at 2m on its way down.

You might be interested in
2. Two identical conducting spheres are placed with their centers 0.30 m apart. One is given a charge of 12 x 10-9 C and the oth
Maru [420]

Answer:

A. -2.16 * 10^(-5) N

B. 9 * 10^(-7) N

Explanation:

Parameters given:

Distance between their centres, r = 0.3 m

Charge in first sphere, Q1 = 12 * 10^(-9) C

Charge in second sphere, Q2 = -18 * 10^(-9) C

A. Electrostatic force exerted on one sphere by the other is:

F = (k * Q1 * Q2) / r²

F = (9 * 10^9 * 12 * 10^(-9) * -18 * 10^(-9)) / 0.3²

F = -2.16 * 10^(-5) N

B. When they are brought in contact by a wire and are then in equilibrium, it means they have the same final charge. That means if we add the charges of both spheres and divided by two, we'll have the final charge of each sphere:

Q1 + Q2 = 12 * 10^(-9) + (-18 * 10^(-9))

= - 6 * 10^(-9) C

Dividing by two, we have that each sphere has a charge of -3 * 10^(-9) C

Hence the electrostatic force between them is:

F = [9 * 10^9 * (-3 * 10^(-9)) * (-3 * 10^(-9)] / 0.3²

F = 9 * 10^(-7) N

7 0
3 years ago
Which type of mirror causes light to spread out?
saw5 [17]
A convex mirror makes a reflected light rays spread out.
3 0
3 years ago
Read 2 more answers
a 10.0 kg sphere is released from rest in an ocean. as it falls, the water applies a resistive force r
dimaraw [331]

The calculated coefficient of kinetic friction is 0.33125.'

The rate of kinetic friction the friction force to normal force ratio experienced by a body moving on a dry, uneven surface is known as k. The friction coefficient is the ratio of the normal force pressing two surfaces together to the frictional force preventing motion between them. Typically, it is represented by the Greek letter mu (). In terms of math, is equal to F/N, where F stands for frictional force and N for normal force.

given mass of the block=10 kg

spring constant k= 2250 Nm

now according to principal of conservation of energy we observe,

the energy possessed by the block initially is reduced by the friction between the points B and C and rest is used up in work done by the spring.

mgh= μ (mgl) +1/2 kx²

10 x 10 x 3= μ(600) +(1125) (0.09)

μ(600) =300 - 101.25

μ = 198.75÷600

μ =0.33125

The complete question is- A 10.0−kg block is released from rest at point A in Fig The track is frictionless except for the portion between point B and C, which has a length of 6.00m the block travels down the track, hits a spring of force constant 2250N/m, and compresses the spring 0.300m form its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between point Band (C)

Learn more about kinetic friction here-

brainly.com/question/13754413

#SPJ4

4 0
2 years ago
PLEASE HELP ME!<br><br> How do you think the swarms affect local populations of humans?
Volgvan

Answer:

by temperature

Explanation:

cuz

5 0
3 years ago
According to collision theory, which condition(s) must be met in order for molecules to react?
kondaur [170]

Answer:

B because molecules occurs by the reaction

5 0
3 years ago
Other questions:
  • A simple harmonic oscillator oscillates with frequency f when its amplitude is
    5·1 answer
  • The energy a glass has as you are holding it still above a table is
    6·2 answers
  • A criminal suspect must be read his or her rights when arrested.this process is referred to as
    8·1 answer
  • 7. The first American to go into outer space was a monkey.<br> a. True<br> b. False
    13·2 answers
  • Which of the following statements about the resistsance of a wire is correct? Select THREE answers.
    11·1 answer
  • A particle's position along the x-axis is described by. x(t)= At+Bt^2where t is In seconds: x is in meters: and the constants A
    11·1 answer
  • The chemical symbol for sulfuric acid is H2SO4. How many atoms are contained in each molecule of sulfuric acid?
    10·1 answer
  • An airplane whose air speed is 527 mi/hr covers a distance of 907 miles in 2.25 hrs. How strong was the head wind against it?
    12·1 answer
  • A 3600-N Force causes a car to accelerate at a rate of 4m/s2. What is the mass of the car?
    6·1 answer
  • Information about mars' moons.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!