"High temperatures make the gas molecules move more quickly" is the one sentence among all the choices given in the question that most likely explains why this reaction is carried out at high temperature. The correct option among all the options that are given in the question is the third option or option "C".
2BF₃ + 3Li₂SO₃ ----> B₂(SO₃)₃ + <u>6LiF
</u>:)<u>
</u>
The law of conservation of mass applies to every reaction. In this case, you start with 1 Mg, 2 H, and 2CL and end up with the same five only their bonds have been rearranged, or in other words, they are joined up differently.
Answer:

Explanation:
The Rydberg equation gives the wavelength λ for the transitions:

where
R= the Rydberg constant (1.0974 ×10⁷ m⁻¹) and

Data:

λ = 657 nm
Calculation:

We can calculate how long the decay by using the half-life equation. It is expressed as:
A = Ao e^-kt
<span>where A is the amount left at t years, Ao is the initial concentration, and k is a constant.
</span><span>From the half-life data, we can calculate for k.
</span>
1/2(Ao) = Ao e^-k(30)
<span>k = 0.023
</span>
0.04Ao = Ao e^0.023(t)
<span>t = 140 sec</span>