Molar mass:
KCl = 74.55 g/mol
KClO3 = 122. 55 g/mol
<span>Calculation of the mass of KClO3 :</span>
<span>2 KClO3 = 2 KCl + 3 O2</span>
2* 122.55 g KClO3 ------------------ 2 * 74.55 g KCl
mass KClO3 ?? --------------------- 25.6 g KCl
mass KClO3 = 25.6 * 2 * 122.55 / 2 * 74.55
mass KClO3 = 6274.56 / 149.1
mass = 42.082 g of KClO3
Therefore:
1 mole KClO3 ---------------------- 122.55 g
?? moles KClO3 ------------------- 42.082 g
moles KClO3 = 42.082 * 1 / 122.55
moles KClO3 = 42.082 / 122.55
=> 0.343 moles of KClO3
Answer C
hope this helps!
Answer: 26.54 grams
Explanation:
To calculate the moles :

is the limiting reagent as it limits the formation of product and
is the excess reagent
According to stoichiometry :
As 1 moles of
give = 3 moles of 
Thus 0.369 moles of
give =
of 
Mass of 
Thus 26.54 g of
will be produced from the given mass.
aqueous Magnesium Chloride reacts with liquid Bromide to form aqueous Magnesium Bromide and Chlorine gas
Answer:
If you mix equal amounts of a strong acid and a strong base, the two chemicals essentially cancel each other out and produce a salt and water. Mixing equal amounts of a strong acid with a strong base also produces a neutral pH (pH = 7) solution.
Answer:
2
Explanation:
Each orbital can hold two electrons. One spin-up and one spin-down.