The 5 branches are organic, inorganic, biochemistry, analytical, and physical. There are different branches because they each apply to different parts of chemistry. For example organic chemistry is the study of carbon compounds and inorganic chemistry is the study of non carbon compounds. You can't just have one type of chemistry because these are very different.
First, let's state the chemical reaction:

We can find the number of moles of Cl2 required to produce 0.0923 moles of AlCl3, doing a rule of three: 3 moles of Cl2 reacted produces 2 moles of AlCl3:

The calculation would be:

And the final step is to convert this number of moles to grams. Remember that the molar mass can be calculated using the periodic table, so the molar mass of Cl2 is 70.8 g/mol, and the conversion is:

The answer is that we need 9.770 grams of Cl2 to produce 0.0923 moles of AlCl3.
The correct answer is C. Hope it helped!!!!!
Answer:
The experimental feature of the MALDI-MS technique which allows the separation of ions formed after the adduction of tissue molecules:
B) Velocity of ions depends on the ion mass-to-charge ratio.
Explanation:
- The option a is not correct as distance traveled by ions doesn't depend upon the ion charge rather it depends upon time for which you leave the sample to run.
- The option b is correct as velocity of ions depends on the ion mass-to-charge ratio because separation is done due to mass to charge ratio feature.
- The option c is incorrect as time of travel is not inversely proportional to the ion-to-mass ratio because the ion will move across the gel until you stop the electric field.
- The option d is not correct as electric field between MALDI plate and MS analyzer is though uniform but this feature doesn't allow the separation of ions.