As per kinematics equation we know that
final speed of the car = 0 m/s
initial speed is given as 30 m/s
distance moved = 100 m
now we have



now braking force is given as

now for mass we know that the weight of car is

so mass of car is

now we have

Part b)
Again we have
final speed of the car = 0 m/s
initial speed is given as 30 m/s
distance moved = 10 m
now we have



now braking force is given as

mass of car is

now we have

Answer:
Slit separation, 
Explanation:
It is given that,
Wavelength of light, 
The angle between the central bright fringe and the second dark fringe, 
In case of double slits, the condition for dark fringe is given by :

n = 2




So, the slit separation is
. Hence, this is the required solution.
Answer:
The remaining lights would shine with the same brightness.
Explanation:
Answer:
It is easier to stop the bicycle moving at a lower velocity because it will require a <em>smaller force</em> to stop it when compared to a bicycle with a higher velocity that needs a<em> bigger force.</em>
Explanation:
The question above is related to "Newton's Law of Motion." According to the <em>Third Law of Motion</em>, whenever an object exerts a force on another object <em>(action force)</em>, an equal force is exerted against it. This force is of the same magnitude but opposite direction.
When it comes to moving bicycles, the force that stops their movement is called "friction." Applying the law of motion, the higher the speed, the higher the force<em> </em>that is needed to stop it while the lower the speed, the lower the force<em> </em>that is needed to stop it.