1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anzhelika [568]
3 years ago
9

Saved

Physics
1 answer:
Anon25 [30]3 years ago
3 0

Total distance moved by bead is 1.952 cm.

Explanation:

Let first consider all data that are given in question.

1.    F = 8 N                       ...force acting on string

2.   f  = 2 Hz                     ...frequency of system

3.   β = 4 cm = 0.04 m    ...wavelength of wave formed due to vibration           4.   A =  1 cm  = 0.01 m     ...Amplitude of vibration

Under certain conditions, waves can bounce back and forth through a particular region, effectively becoming stationary. These are called standing waves.

Here,it is due to vibration induced in spring due to tension induced in string

Standing wave equation is given by

y = (x,t) = 2A * sinK x * cos (wt)                ...(1)

Let first find, value of K, x, w, t

k = 2 * pi / beta                                          ....(2)

Where β is wavelength in meters

                   K is wave number

k = 2 * pi / 0.01

k = 628.31 m^{-1}

now, let us find value of w

W = 2 x pi x f                               ....(3)

                where f is frequency in hertz

W = 2 x pi x 2

W = 4 x pi

W = 0.08 \frac{m}{s}

y = (x,t) = 2A * sinK x * cos (wt)

now, let us find value of v that is wave speed

Notice that some x-positions of the resultant wave are always zero no matter what the phase relationship is.  These positions are called nodes.

Finding the positions where the sine function equals zero provides the positions of the nodes.

In our case, and      

K * x = pi

x = 0.04 / 2

x = 0.02

y = (0.02,1) = 2(0.01) * sin pi  * cos (12.5664 * 1)

y = (0.02,1) = 2(0.01) * -1  * cos 0.9761

Y = 1.952 cm

Finally, when bead is at middle of the string, total distance after stretch covered  is 1.952 cm.

You might be interested in
Water drips from a shower head (the sprayer at the top of the shower) and falls onto the floor 2.3 m below. The droplets are fal
Maurinko [17]

Answer:

0.767m

Explanation:

We are given that the time interval between each droplet is equal.

We are also given that the fourth drop is just dripping from the shower when the first hits the floor.

If they fall at the same time interval and we know that the distance between the shower head and floor are the same, they must therefore fall at the same velocity.

The distance between each drop has to be the same given that they fall at equal time intervals.

Let this distance be x.

We can then partition the entire height of the system into three parts (as shown in the diagram).

Hence, we can say that:

x + x + x = 2.3m

3x = 2.3m

=> x = 2.3/3 = 0.767m

Therefore, at the time the first drop hits the floor, the third drop is only 0.767 m below the shower head.

8 0
3 years ago
A light pointer is stuck to the rubber sheet so that it pivots about a point P near the
deff fn [24]
I’m not going to church tomorrow or Friday I don’t want to go go back up
8 0
2 years ago
If a ball is thrown straight up into the air with an initial velocity of 65 ft/s, its height in feet after t seconds is given by
fgiga [73]

Answer:

a) v_{1}=\frac{(62.5-66)ft}{(2.5-2)s}=-7ft/s

v_{2}=\frac{(65.94-66)ft}{(2.1-2)s}=-0.6ft/s

v_{3}=\frac{(66.0084-66)ft}{(2.01-2)s}=0.84ft/s

v_{4}=\frac{(66.001-66)ft}{(2.001-2)s}=1ft/s

b) v=65-32(2)=1ft/s

Explanation:

From the exercise we got the ball's equation of position:

y=65t-16t^{2}

a) To find the average velocity at the given time we need to use the following formula:

v=\frac{y_{2}-y_{1}  }{t_{2}-t_{1}  }

Being said that, we need to find the ball's position at t=2, t=2.5, t=2.1, t=2.01, t=2.001

y_{t=2}=65(2)-16(2)^{2} =66ft

y_{t=2.5}=65(2.5)-16(2.5)^{2} =62.5ft

v_{1}=\frac{(62.5-66)ft}{(2.5-2)s}=-7ft/s

--

y_{t=2.1}=65(2.1)-16(2.1)^{2} =65.94ft

v_{2}=\frac{(65.94-66)ft}{(2.1-2)s}=-0.6ft/s

--

y_{t=2.01}=65(2.01)-16(2.01)^{2} =66.0084ft

v_{3}=\frac{(66.0084-66)ft}{(2.01-2)s}=0.84ft/s

--

y_{t=2.001}=65(2.001)-16(2.001)^{2} =66.001ft

v_{4}=\frac{(66.001-66)ft}{(2.001-2)s}=1ft/s

b) To find the instantaneous velocity we need to derivate the equation

v=\frac{df}{dt}=65-32t

v=65-32(2)=1ft/s

7 0
3 years ago
Why do people tend to cup their hands around listeners' ears when whispering to them? A) A cupped hand makes the sound echo so t
WITCHER [35]
C. Hope this helps you!
6 0
3 years ago
Read 2 more answers
A listener increases his distance from a sound source by a factor of 4.49.
noname [10]

Answer: Δβ (dB) = -13.1dB

Explanation:

The intensity of sound is inversely proportional to the square of the distance between them.

I ∝ 1/r²

I₁/I₂= r₂²/r₁² .....1

When the listener increases his distance from the source by a factor of 4.49.

Then,

r₂/r₁= 4.49

From equation 1

I₁/I₂ = (4.49)²

I₁/I₂ = 20.16

I₂/I₁ = 1/20.16

The change in sound intensity in dB can be given as

Δβ (dB) = 10 log(I₂/l₁) = 10log(1/20.6) = -13.1dB

6 0
4 years ago
Other questions:
  • Susan works 8 hours a day and makes $7.00 per hour. How much money does Susan earn in one week if she
    7·2 answers
  • Why do you think the government of ancient Rome was unfair?
    5·1 answer
  • One container has 100 ml of water and a second container has 1000 ml of water. If the temperature in both containers is 22 oc (7
    13·1 answer
  • A jet plane flying 600 m/s experiences an acceleration of 4.0 g when pulling out of the circular section of a dive. What is the
    12·1 answer
  • Select the correct answer. Five marbles roll down a ramp. Each marble reaches the bottom of the ramp at a speed of 3 meters/seco
    9·2 answers
  • A rear window defroster consists of a long, flat wire bonded to the inside surface of the window. When current passes through th
    10·1 answer
  • Why is it more helpful to know a tornadoes velocity rather than its speed
    14·2 answers
  • A sinusoidal transverse wave travels along a long, stretched, string. the amplitude of this wave is 0.0885 m, it's frequency is
    10·1 answer
  • Which of the following plays a major role in creating surface currents?
    9·2 answers
  • Kathy 82 kg performer standing on a diving board at the carnival dive straight down into a small pool of water. Just before stri
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!