I can help you with part 1
<span>Let's </span>assume that water vapor has ideal gas
behavior. <span>
Then we can use ideal gas formula,
PV = nRT<span>
</span><span>Where, P is the pressure of the gas (Pa), V
is the volume of the gas (m³), n is the number
of moles of gas (mol), R is the universal gas constant ( 8.314 J mol</span></span>⁻¹ K⁻¹) and T is temperature in Kelvin.<span>
<span>
</span>P = 1 atm = 101325 Pa (standard pressure)
V = 13.97 L = 13.97 x 10</span>⁻³ m³<span>
n = ?
R = 8.314 J mol</span>⁻¹ K⁻¹<span>
T = 0 °C = 273 K (standard temperature)
<span>
By substitution,
</span>101325 Pa x 13.97x 10</span>⁻³
m³ = n x 8.314 J mol⁻¹ K⁻¹ x 273 K<span>
n = 0.624 mol
<span>
Hence, the moles of water vapor at STP is 0.624 mol.
According to the </span></span>Avogadro's constant, 1 mole of substance has 6.022 × 10²³ particles.
<span>
Hence, number of atoms in water vapor = 0.624 mol x </span>6.022 × 10²³ mol⁻¹
<span> = 3.758 x 10</span>²³<span>
</span>
Answer:
They are similarly charged, which is why they repel each other.
Answer:
E = 147000 J
Explanation:
Given that,
The mass of meteor, m = 50 kg
The altitude of the meteor, h = 300 m
We need to find the potential energy of the meteor. The formula for the potential energy is given by :

Put all the values,

So, the required potential energy is equal to 147000 J.
Answer:
First, find out how many moles of N2I6 you have. Then convert that to grams.
molar mass N2I6 = 789 g
moles N2I6 = 8.2x1022 molecules N2I6 x 1 mole/6.02x1023 molecules = 1.36x10-1 moles = 0.136 moles
grams N2I6 = 0.136 moles x 789 g/mole = 107 g = 110 g (to 2 significant figures)