The amount of current required to produce 75. 8 g of iron metal from a solution of aqueous iron (iii)chloride in 6. 75 hours is 168.4A.
The amount of Current required to deposit a metal can be find out by using The Law of Equivalence. It states that the number of gram equivalents of each reactant and product is equal in a given reaction.
It can be found using the formula,
m = Z I t
where, m = mass of metal deposited = 75.8g
Z = Equivalent mass / 96500 = 18.6 / 96500 = 0.0001
I is the current passed
t is the time taken = 75hour = 75 × 60 = 4500s
On subsituting in above formula,
75.8 = E I t / F
⇒ 75.8 = 0.0001 × I × 4500
⇒ I = 168.4 Ampere (A)
Hence, amount of current required to deposit a metal is 168.4A.
Learn more about Law of Equivalence here, brainly.com/question/13104984
#SPJ4
Answer is: mass of salt is 311,15 g.
V(H₂O) = 1,48 l · 1000 ml/l = 1480 ml.
m(H₂O) = 1480 g = 1,48 kg.
d(solution) = 1,00 g/ml.
ΔT(solution) = 13,4°C = 13,4 K.
Kf = 1,86 K·kg/mol; cryoscopic constant of water
i(NaCl) = 2; Van 't Hoff factor.
ΔT(solution) = Kf · b · i.
b(NaCl) = 13,4 K ÷ (1,86 K·kg/mol · 2).
b(NaCl) = 3,6 mol/kg.
n(NaCl) = 3,6 mol · 1,48 kg= 5,328 mol.
m(NaCl) = 5,328 mol · 58,4 g/mol = 311,15 g.
I’m pretty sure it’s D.increases the activation energy for a reaction.
boyles law states that the volumes of a gas will decrease as pressure increases if the temperature remains constant.
charles law states that the volume of a gas will increase as temp increases if the pressure remains constant.
gay-lussacs law states that the pressure increases as temp increases if the volume remains constant.
Answer:
4,572.67
Explanation:
11 divided by 1000= 90.90
44= 11x
x=4
4 x 11= 4000
44-51.300=6.300
6.300 x 90.90=572.67
4000 + 572.67 = the answer