Answer:
- <em>To solve these first swap x and y, solve for y and name it inverse function</em>
3. <u>y = -8x + 2</u>
- x = -8y + 2
- 8y = -x + 2
- y = -x/8 + 2/8
- y = -(18)x + 1/4
f⁻¹(x) = -(18)x + 1/4
-----------------------------------------
4.<u> y = (2/3)x - 5</u>
- x = (2/3)y - 5
- (2/3)y = x + 5
- y = (3/2)x + (3/2)5
- y = 1.5x + 7.5
f⁻¹(x) = 1.5x + 7.5
-----------------------------------------
5. <u>f(x) = 2x² - 6</u>
- x = 2y² - 6
- 2y² = x + 6
- y² = 1/2x + 3
- y =

f⁻¹(x) = 
-----------------------------------------
6. <u>y = (x - 3)²</u>
- x = (y - 3)²
= y - 3- y = 3 +

f⁻¹(x) = 3 + 
Answer:
142:23
Step-by-step explanation:
The length of the rectangle is given as 71/2 while its width is 23/4
We are required to determine the ratio of the length to the width;
length:width
(71/2):(23/4)
(71/2)/(23/4)
71/2 * 4/23 = 142/23
The ratio of the length to the width is thus;
142:23
Answer:
17.5
Step-by-step explanation:
Pythagorean Theorem is a^2 + b^2 =c^2
a= 9 , b= 15, c= x
9^2 + 15^2 = c^2
= c^2
c= 17.493 or 17.5 rounded to the nearest tenth
Answer:
(a)
$24.10,
$18.20,
$15.25,
$9.35,
$0.50,
(b)
b=30-2.95g
Step-by-step explanation:
*******************************************************
(See attached formula)
Loan Principal = 104,000 - 24,000 = 80,000
rate = 8.5 / 1,200 =
<span>
<span>
<span>
0.0070833333
</span>
</span>
</span>
time = 25 years = 300 months
Monthly Payment = <span>
<span>
0.0070833333
</span>
+ </span><span>
<span>
[ 0.0070833333
/ ((1</span></span><span>.0070833333)^300 -1)) ] *principal
</span>
Monthly Payment = <span>0.0070833333
+ </span><span>
[ 0.0070833333
/ (</span><span>
</span>
<span>
<span>
<span>
8.3104129461
</span>
</span>
</span>
-1)] * 80,000
Monthly Payment = 0.0070833333
+
[ 0.0070833333
/ ( 7.3104129461)] * 80,000
Monthly Payment = (0.0070833333
+
<span>
<span>
<span>
0.00096893750767) * 80,000
</span></span></span>Monthly Payment =
<span>
<span>
<span>
0.00805227080767
</span>
</span>
</span>
* 80,000
Monthly Payment =
<span>
<span>
<span>
644.18
Source:
http://www.1728.org/calcloan.htm
</span></span></span>