The dispersed particles of a colloid exhibit brownian motion, in which they move in a chaotic manner without a discernible pattern. The brownian motion is the erratic random motion of particles that are suspended in a fluid which results to the collision of molecules moving fast in the fluid they are in.
Answer: 0.225 atm
Explanation:
For this problem, we have to use Boyle's Law.
Boyle's Law: P₁V₁=P₂V₂
Since we are asked to find P₂, let's manipulate the equation.
P₂=(P₁V₁)/V₂

With this equation, the liters cancel out and we will be left with atm.
P₂=0.225 atm
Answer:
AuCl
Explanation:
Given parameters:
Mass of Gold = 2.6444g
Mass of Chlorine = 0.476g
Unknown:
Empirical formula = ?
Solution:
Empirical formula is the simplest formula of a compound. Here is the way of determining this formula.
Elements Au Cl
Mass 2.6444 0.476
Molar mass 197 35.5
Number of moles 2.6444/197 0.476/35.5
0.013 0.013
Divide by the
smallest 0.013/0.013 0.013/0.013
1 1
The empirical formula of the compound is AuCl
Answer: The density of the material is 2.66 g/mL and it is likely this is made of Aluminum
Explanation:
The first step to know the material of the chunk of metal is to calculate its density. The general formula for density is P (density) =
. Moreover, in this case, it is known the mass is 37.28 g, but the volume is not directly provided. However, we know the water in the graduated cylinder had a volume of 20.0 mL and this increased to 34.0 mL when the chunk of metal is added, this means the volume of the metal is 14 mL (34.0 mL - 20.0 mL = 14 mL). Now let's calculate the density:

This means the density of this metal is 2.66 g/mL, which can be rounded as 2. 7 g/mL, and according to the chart, this is the density of aluminum. Therefore, this material of this chunk is aluminum.