Answer:
The number of neutron in the Aluminium Isotope is :
B. 14
Explanation:
Isotopes : These are the atoms which have same atomic number but have different mass number.
<u>This image shows the average atomic mass of Al element because it is in decimals</u>.
Atomic mass = 26.98154
(Note : mass number of single isotope can never be in decimals)
It is the average of mass of different isotopes of Al
Major Isotopes of
are :
......atomic mass = 26
.......atomic mass = 27
mass of Al given in image(26.98) is nearly equal to mass of 2nd isotope(27)
mass of 
Now calculate the neutron in 
Number of neutron = mass number - atomic number
= 27 - 13
Number of neutron = 14
(Atomic mass is same as mass number)
The equation for calculating a mass is as follows:
m=n×M
Molar mass (M) we can determine from Ar that can read in a periodical table, and a number of moles we can calculate from the available date for N:
n(H2SO4)=N/NA
n(H2SO4)= 1.7×10²³ / 6 × 10²³
n(H2SO4)= 0.3 mole
Now we can calculate a mass of H2SO4:
m(H2SO4) = n×M = 0.3 × 98 = 27.8 g
Covalent bonds are strong bonds. Atoms that share pairs of electrons form molecules. A molecule is a group of atoms held together by covalent bonds. A diatomic molecule is a molecule containing only two atoms.
<span>its because they're both structured the same way. for example the sun and the nucleus are the same (in the centre) and the electrons and planets orbiting are the same</span>
Answer:
Option A
Explanation:
Temperature of a body is due to the heat gained or loss. During a phase change, the atoms or molecules of a substance are undergoing change is temperature due to which no temperature change is observed during phase change. The heat in the transition phase is used to break bonds and the change in temperature is felt when kinetic energy change is complete. During transition, the average kinetic energy of the molecules remains unchanged and hence during a phase change a temperature do not changes until unless the phase change is completed.
Hence, option A is correct