Answer:
Kc for this reaction is 0.43
Explanation:
This is the equilibrium:
N₂(g) + 2H₂O(g) → 2NO(g) +2H₂(g)
And we have all the concentration at equilibrium:
N₂: 0.25M
H₂ : 1.3M
NO: 0.33M
H₂: 1.2M
They are ok, because they are in MOLARITY. (mol/L)
Let's make the expression for Kc
Kc = ( [NO]² . [H₂]² ) / ([N₂] . [H₂O]²)
Kc = (0.33² . 1.2²) / (0.25 . 1.2²)
Kc = 0.4356
In two significant digits. 0.43
Answer:
Fe²⁺(aq) + S²⁻(aq )⟶ FeS(s)
Step-by-step explanation:
Molecular Equation:
(NH₄)₂S(aq) + FeCl₂(aq) ⟶ 2NH₄Cl(aq) + FeS(s)
Ionic equation
:
2NH₄⁺(aq) + S²⁻(aq) + Fe²⁺(aq) + 2Cl⁻(aq) ⟶ 2NH₄⁺(aq) + 2Cl⁻(aq) + FeS(s)
Net ionic equation
:
Cancel all ions that appear on both sides of the reaction arrow (underlined).
<u>2NH₄⁺(aq)</u> + S²⁻(aq) + Fe²⁺(aq) + <u>2Cl⁻(aq)</u> ⟶ <u>2NH₄⁺(aq) </u>+ 2<u>Cl⁻(aq) </u>+ FeS(s)
Fe²⁺(aq) + S²⁻(aq )⟶ FeS(s)
Answer:
They can be dated using radioactive carbon. But for rocks older than 50 thousand years they look for layers of igneous rock or volcanic ash above and Bellow the layer of rock/fossil.
boilng points would boil overAnswer:
Explanation: