Classify what. explain more
1.B
6.D
D because t<span>he mass of one mole (molar mass) of helium gas is </span>4.002602 g/mol. 4.002602 * 5=20.01309. Rounded equals 20. So, the answer is D.20 g.
Explanation:
substance Q could be <em><u>oxygen (O2)</u></em>
substance R could be <em><u>carbon</u></em><em><u> </u></em><em><u>d</u></em><em><u>i</u></em><em><u>o</u></em><em><u>x</u></em><em><u>i</u></em><em><u>d</u></em><em><u>e</u></em><em><u> </u></em><em><u>(</u></em><em><u>C</u></em><em><u>O</u></em><em><u>2</u></em><em><u>)</u></em>
Answer:
b) 2.0 mol
Explanation:
Given data:
Number of moles of Ca needed = ?
Number of moles of water present = 4.0 mol
Solution:
Chemical equation:
Ca + 2H₂O → Ca(OH)₂ + H₂
now we will compare the moles of Ca and H₂O .
H₂O : Ca
2 : 1
4.0 : 1/2×4.0 = 2.0 mol
Thus, 2 moles of Ca are needed.
Answer:
The answer to the question is
The pressure of carbon dioxide after equilibrium is reached the second time is 0.27 atm rounded to 2 significant digits
Explanation:
To solve the question, we note that the mole ratio of the constituent is proportional to their partial pressure
At the first trial the mixture contains
3.6 atm CO
1.2 atm H₂O (g)
Total pressure = 3.6+1.2= 4.8 atm
which gives
3.36 atm CO
0.96 atm H₂O (g)
0.24 atm H₂ (g)
That is
CO+H₂O→CO(g)+H₂ (g)
therefore the mixture contained
0.24 atm CO₂ and the total pressure =
3.36+0.96+0.24+0.24 = 4.8 atm
when an extra 1.8 atm of CO is added we get Increase in the mole fraction of CO we have one mole of CO produces one mole of H₂
At equilibrium we have 0.24*0.24/(3.36*0.96) = 0.017857
adding 1.8 atm CO gives 4.46 atm hence we have
(0.24+x)(0.24+x)/(4.46-x)(0.96-x) = 0.017857
which gives x = 0.031 atm or x = -0.6183 atm
Dealing with only the positive values we have the pressure of carbon dioxide = 0.24+0.03 = 0.27 atm