Answer:
52 da
Step-by-step explanation:
Whenever a question asks you, "How long to reach a certain concentration?" or something similar, you must use the appropriate integrated rate law expression.
The i<em>ntegrated rate law for a first-order reaction </em>is
ln([A₀]/[A] ) = kt
Data:
[A]₀ = 750 mg
[A] = 68 mg
t_ ½ = 15 da
Step 1. Calculate the value of the rate constant.
t_½ = ln2/k Multiply each side by k
kt_½ = ln2 Divide each side by t_½
k = ln2/t_½
= ln2/15
= 0.0462 da⁻¹
Step 2. Calculate the time
ln(750/68) = 0.0462t
ln11.0 = 0.0462t
2.40 = 0.0462t Divide each side by 0.0462
t = 52 da
Answer:
The final temperature is 31.95° C.
Explanation:
Given that,
Initial temperature of a sample of chloroform, 
Mass of chloroform, m = 150 g
It absorbs 1 kJ of heat, Q = 10³ J
The specific heat of chloroform, c = 00.96 J/gºC
We need to find the final temperature. The heat absorbed by an object in terms of specific heat is given by :

So, the final temperature is 31.95° C.
Answer:
All of the above
Explanation:
All of this is in the solar system.
Answer:
Coefficient of 
Coefficient of
=8
Explanation:
We are given that a reaction in which
reacts with 
We have to find the coefficient of each reactants in balanced reaction

Coefficient is defined the constant value multiplied with a reactant in a reaction.
Coefficient of
=3
Coefficient of 
Coefficient of 
Coefficient of 
Coefficient of 
Coefficient of KOH=2
Hence, Coefficient of
and coefficient of 