Answer:
V = 20 miles /sec
Explanation:
We have remaining distance = d = 96 miles
Lets call Pascal velocity V in miles per hour
Now if he increases his velocity by 50 % (equivalent to multiply by 1.5 ) he will need a time t₁ to arrive then as V = d/t
1.5* V = d/ t₁ ⇒ 1.5 * V = 96 /t₁
And in the case of reducing his velocity
(V / 4) = d/ (t₁ + 16 ) ⇒ V * (t₁ + 16 ) = 4*d ⇒ V*t₁ + 16*V = 384
So we a 2 equation system with two uknown variables
1.5*V = 96/t₁ (1)
V*t₁ + 16*V = 384 (2)
We solve from equation (1) t₁ = 64/V
And by substitution in equation (2)
V * (64/V) + 16* V = 384
64 + 16 *V = 384 ⇒ 16*V = 320 ⇒ V= 320/16
V = 20 miles /sec
Answer: unspecific
Explanation:
you should always be specific with your goals, say someones goal is to make it to state for swimming, he/she should be specific to the event in which they want to go to state in.
<span>3.78 m
Ignoring resistance, the ball will travel upwards until it's velocity is 0 m/s. So we'll first calculate how many seconds that takes.
7.2 m/s / 9.81 m/s^2 = 0.77945 s
The distance traveled is given by the formula d = 1/2 AT^2, so substitute the known value for A and T, giving
d = 1/2 A T^2
d = 1/2 9.81 m/s^2 (0.77945 s)^2
d = 4.905 m/s^2 0.607542 s^2
d = 2.979995 m
So the volleyball will travel 2.979995 meters straight up from the point upon which it was launched. So we need to add the 0.80 meters initial height.
d = 2.979995 m + 0.8 m = 3.779995 m
Rounding to 2 decimal places gives us 3.78 m</span>
I would have to say B failed because I think I read something about it being only 2law not 3
It would be B. since the scanning shows what the terrain is down there
(I listened)