1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SIZIF [17.4K]
2 years ago
5

Two loudspeakers emit sound waves of the same frequency along the x-axis. The amplitude of each wave is a. The sound intensity i

s minimum when speaker 2 is 10 cm behind speaker 1. The intensity increases as speaker 2 is moved forward and first reaches maximum, with amplitude 2a, when it is 30 cm in front of speaker 1. What is What isThe amplitude of the sound (as a multiple of a) if the speakers are placed side by side?
Physics
1 answer:
leonid [27]2 years ago
7 0

Answer:

Explanation:

To find the amplitude of the sound, we must first determine the wavelength and the phase difference between the two speakers.

For the wavelength;

Recall that, the separation between two successive max. and min. intensity points are \dfrac{\lambda}{2}

Thus; for both speakers; the wavelength of the sound is:

\dfrac{\lambda}{2} = (10+30) cm

\dfrac{\lambda}{2} = (40) cm

λ = 80 cm

The relation between the path difference(Δx) and the phase difference(Δ∅) is:

\Delta \phi = \dfrac{2 \pi}{\lambda}\Delta x + \Delta \phi_o

where;

Δx = 10 cm

λ = 80 cm

Δ∅ = π rad

∴

\Delta \phi = \dfrac{2 \pi}{\lambda}\Delta x + \Delta \phi_o

\pi \ rad  = \dfrac{2 \pi}{80 \ cm}(10 \ cm) + \Delta \phi_o

\pi \ rad  = \dfrac{2 \pi}{8}+ \Delta \phi_o

\pi \ rad  = \dfrac{ \pi}{4}+ \Delta \phi_o

\Delta \phi_o  =  \pi -\dfrac{ \pi}{4}

\Delta \phi_o  = \dfrac{ 4\pi - \pi}{4}

\Delta \phi_o  = \dfrac{ 3\pi}{4} \ rad

Suppose both speakers are placed side-by-side, then the path difference between the two speakers is: Δx = 0 cm

Thus, we have:

\Delta \phi = \dfrac{2 \pi}{\lambda}\Delta x + \Delta \phi_o

\Delta \phi = \dfrac{2 \pi}{\lambda}(0 \ cm ) + \dfrac{3 \pi}{4} \ rad

\Delta \phi = \dfrac{3 \pi}{4} \ rad

∴

The amplitude of the sound wave if the two speakers are placed side-by-side is:

A = 2a \ cos \bigg (\dfrac{\Delta \phi }{2} \bigg)

A = 2a \ cos \bigg (\dfrac{\dfrac{3 \pi}{4} }{2} \bigg)

A = 2a \ cos \bigg ({\dfrac{3 \pi}{8} } \bigg)

A = 0.765a

You might be interested in
(20 points) You are at the center of a boat and have been rowing the boat for a long time. You weigh only 80 kg and your 120 kg
valina [46]

Answer:

Explanation:

From the given information:

Let the first weight be m_ 1 = 80 kg

The weight of the buddy be m_2 = 120 kg

The weight of  Bubba be m_3 = 60 kg

Also, since you and Budda are a distance of 4m to each other, then the length to which both meet buddy will be:

x_1 = x_3 = \dfrac{4}{2} \\ \\ = 2

The length of the boat be x_2 = 4 m

∴

We can find the center of mass of the system by using the formula:

X_{CM} = \dfrac{m_1x_1+m_2x_2+m_3x_3}{m_1+m_2+m_3} \\ \\ X_{CM} = \dfrac{(80 \times 2)+(120\times4)+(60\times2)}{80+120+60} \\ \\ X_{CM} = \dfrac{160+480+120}{260} \\ \\ \mathbf{X_{CM} = 2.923}

4 0
3 years ago
Which genotype has a 50% chance of being inherited
stepan [7]
Recessive genotype I hope this helps
8 0
3 years ago
g The international space station has an orbital period of 93 minutes at an altitude (above Earth's surface) of 410 km. A geosyn
krok68 [10]

Answer:

r = 4.21 10⁷ m

Explanation:

Kepler's third law It is an application of Newton's second law where the forces of the gravitational force, obtaining

            T² = (\frac{4\pi }{G M_s} ) r³             (1)

           

in this case the period of the season is

            T₁ = 93 min (60 s / 1 min) = 5580 s

            r₁ = 410 + 6370 = 6780 km

            r₁ = 6.780 10⁶ m

for the satellite

           T₂ = 24 h (3600 s / 1h) = 86 400 s

if we substitute in equation 1

            T² = K r³

            K = T₁²/r₁³

            K = \frac{ 5580^2}{ (6.780 10^6)^2}

            K = 9.99 10⁻¹⁴ s² / m³

we can replace the satellite values

            r³ = T² / K

            r³ = 86400² / 9.99 10⁻¹⁴

            r = ∛(7.4724 10²²)

            r = 4.21 10⁷ m

this distance is from the center of the earth

7 0
3 years ago
A light bulb has a voltage of 36 and a current of 8 A. Calculate the resistance of the light bulb
timurjin [86]
R = U : I. U is in Voltage and I is in Ampère. That gives you R = 36 : 8 = 4,5 Ohm
4 0
3 years ago
A roller coaster car may be approximated by a block of mass m. Thecar, which starts from rest, is released at a height h above t
elena55 [62]

Answer:

The first part can be solved via conservation of energy.

mgh = mg2R + K\\K = mg(h-2R)

For the second part,

the free body diagram of the car should be as follows:

- weight in the downwards direction

- normal force of the track to the car in the downwards direction

The total force should be equal to the centripetal force by Newton's Second Law.

F = ma = \frac{mv^2}{R}\\mg + N = \frac{mv^2}{R}

where N = 0 because we are looking for the case where the car loses contact.

mg = \frac{mv^2}{R}\\v^2 = gR\\v = \sqrt{gR}

Now we know the minimum velocity that the car should have. Using the energy conservation found in the first part, we can calculate the minimum height.

mgh = mg2R + \frac{1}{2}mv^2\\mgh = mg2R + \frac{1}{2}m(gR)\\gh = g2R + \frac{1}{2}gR\\h = 2R + \frac{R}{2}\\h = \frac{5R}{2}

Explanation:

The point that might confuse you in this question is the direction of the normal force at the top of the loop.

We usually use the normal force opposite to the weight. However, normal force is the force that the road exerts on us. Imagine that the car goes through the loop very very fast. Its tires will feel a great amount of normal force, if its velocity is quite high. By the same logic, if its velocity is too low, it might not feel a normal force at all, which means losing contact with the track.

7 0
3 years ago
Other questions:
  • How did tycho brahe's model of the universe differ from the greek geocentric model?
    15·1 answer
  • According to cell theory, where do new cells come from?
    14·1 answer
  • A conducting sphere of radius r1 = 0.21 m has a total charge of Q = 2.9 μC. A second uncharged conducting sphere of radius r2 =
    12·1 answer
  • The distance between the first and fifth minima of a single-slit diffraction pattern is 0.400 mm with the screen 37.0 cm away fr
    5·1 answer
  • When a hypothesis is wrong, scientists often begin by revising the (blank)
    12·2 answers
  • What is the voltage of A simple circuit with one battery​
    5·1 answer
  • What is the mass of a 50 kg person on earth?
    9·1 answer
  • Do machines create less work? Example: pulley system
    10·1 answer
  • Find your acceleration from 8.3 m/s to 12.5 m/s in 1.24 seconds.
    9·1 answer
  • The wavelength of the yellow light from a sodium flame is 589 nm. This light originated from a sodium atom in the hot flame.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!