1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tatiana [17]
3 years ago
5

A rocket is fired straight upward, starting from rest with an acceleration of 25.0 m/s^2. It runs out of fuel at the end of 4.00

s and continues to coast 25.0 m/s^2. It runs out of fuel at the end of 4.00 s and continues to coast upward, reaching a maximum height before falling back to Earth. (a) Find the rocket’s height when it runs out of fuel; (b) find the rocket’s velocity when it runs out of fuel; (c) find the maximum height the rocket reaches; (d) find the rocket’s velocity the instant before the rocket crashes into the ground; and (e) find the total elapsed time from launch to ground impact.
Physics
1 answer:
svetoff [14.1K]3 years ago
6 0

Answer:

a) 200 m

b) 100 m/s

c) 709 m

d) -118.2 m/s

e) 26.24 s

Explanation:

The rocket flies upward with constant acceleretion.

The equation for position under constant acceleration is:

Y(t) = Y0 + Vy0 * t + 1/2 * a * t^2

Y0 = 0

V0 = 0

Y(t) = 1/2 * 25 * t^2

Y(t) = 12.5 * t^2

And speed under constant acceleration:

Vy(t) = Vy0 + a * t

Vy(t) = 25 * t

It burns for 4 s and runs out of fuel

Y(4) = 12.5 * 4^2 = 200 m

V(4) = 25 * 4 = 100 m/s

Form t = 4 the rocket will coast, it will be in free fall, affected only by gravity

It will be under constant acceleration. These new equations will have different starting constants.

Y(t) = Y4 + Vy4 * (t - 4) + 1/2 * g * (t - 4)^2

Vy(t) = Vy4 + g * (t - 4)

When it reaches its highest point it will have a speed of zero.

0 = Vy4 + g * (t - 4)

0 = 100 - 9.81 * (t - 4)

100 = 9.81 * (t - 4)

t - 4 = 100 / 9.81

t = 10.2 + 4 = 14.2 s

At that moment it will have a height of:

Y(14.2) = 200 + 100 * (14.2 - 4) - 1/2 * 9.81 * (14.2 - 4)^2 = 709 m

The rocket will fall and hit the ground:

Y(t) = 0 = 200 + 100 * (t - 4) - 1/2 * 9.81 * (t - 4)^2

0 = 200 + 100 * t - 400 - 4.9 * (t^2 - 8 * t +16)

0 = -4.9 * t^2 + 139.2 * t -278.4

Solving this equation electronically:

t = 26.24 s

At that time the speed will be:

Vy(t) = 100 - 9.81 * (26.24 - 4) = -118.2 m/s

You might be interested in
A plane travels down a runway 2750 m before it lifts off at an angle of 37 degrees from the horizontal. The plane has traveled 1
ss7ja [257]

Answer: 4.236km

Explanation:

Let's define the point (x, y) as:

x = horizontal distance moved.

y = vertical distance moved.

If the plane starts in the point (0, 0) then:

"A plane travels down a runway 2750 m before it lifts off..."

At this time, the position will be:

P = (0 + 2750m, 0) = (2750m, 0).

"it lifts off at an angle of 37 degrees from the horizontal. The plane has traveled 1.8 km since its wheels left the ground."

In this case, as the angle is measured from the horizontal, the components will be:

x = 1.8km*cos(37°) = 1.438km

y = 1.8km*sin(37°) =  1.083 km

Then the new position is:

P = (2750m + 1.438 km, 0 + 1.083 km)

Let's write it using the same units for all the quantities:

we know that

1km = 1000m

Then:

2750m = (2750/1000) km = 2.750 km.

Then we can write the new position as:

P = (2.750 km + 1.438km, 1.083km) = (4.188km, 1.083km)

Now, we define the displacement as the distance between the final position and the initial position.

The distance between two points (a, b) and (c, d) is:

D = √( (a  c)^2 + (b - d)^2)

In this case the points are:

(0, 0) for the initial position

(4.188km, 1.083km) for the final position.

And the displacement will be:

D = √( (4.188km - 0)^2 + (1.083 - 0)^2) = 4.236km

5 0
3 years ago
A wire of radius R has a current I uniformly distributed across its cross-sectional area. Ampere's law is used with a concentric
MrMuchimi

Answer:

Please refer to the figure.

Explanation:

The crucial point here is to calculate the enclosed current. If the current I is flowing through the whole cross-sectional area of the wire, the current density is

J = \frac{I}{\pi R^2}

The current density is constant for different parts of the wire. This idea is similar to that of the density of a glass of water is equal to the density of a whole bucket of water.

So,

J = \frac{I}{\pi R^2} = \frac{I_{enc}}{\pi r^2}\\I_{enc} = \frac{Ir^2}{R^2}

This enclosed current is now to be used in Ampere’s Law.

\mu_o I_{enc} = \int {B} \, dl

Here, \int \, dl represents the circular path of radius r. So we can replace the integral with the circumference of the path, 2\pi r.

As a result, the magnetic field is

B = \frac{\mu_0}{2\pi}\frac{Ir}{R^2}

5 0
3 years ago
What is the difference between kinetic and gravitacional energy?
kondaur [170]

Answer:

In physics, the kinetic energy (KE) of an object is the energy that it possesses due to its motion

In classical mechanics, the gravitational potential at a location is equal to the work (energy transferred) per unit mass that would be needed to move an object to that location from a fixed reference location. It is analogous to the electric potential with mass playing the role of charge. The reference location, where the potential is zero, is by convention infinitely far away from any mass, resulting in a negative potential at any finite distance.

In mathematics, the gravitational potential is also known as the Newtonian potential and is fundamental in the study of potential theory. It may also be used for solving the electrostatic and magnetostatic fields generated by uniformly charged or polarized ellipsoidal bodies

8 0
3 years ago
What is the sl unit for length
NeX [460]

The SI unit of length or distance is the meter.

6 0
4 years ago
Which property best makes radio waves safe for diagnosing illnesses through magnetic resonance imaging?
aleksandrvk [35]

Answer:

It is used in MRI because it does not damage cells

Radio waves are used for space research because they have very long wavelengths

Explanation:

Many parts of the electromagnetic spectrum are applied in clinical diagnosis and treatment of illnesses. However, these highly ionizing radiation damage cells and its dosage must be carefully managed to avoid creating radiation related health problems for the patients.

Radio waves can be used in MRI without issues because the energy of the radiation is not sufficient to cause damage to cells but is sufficient to provide images for the sake of medical diagnosis.

Secondly, radio waves have long wavelength. This property is suitable for long range

communication. Hence it can be used in space research

4 0
3 years ago
Read 2 more answers
Other questions:
  • Definition of cloud formation in your own words
    13·1 answer
  • When an atom releases gamma radiation____________.
    15·1 answer
  • H e l p.. I have no idea what any of this is, what is the first step of the hydrogen fusion process
    10·2 answers
  • In the design of a supermarket, there are to be several ramps connecting different parts of the store. Customers will have to pu
    6·1 answer
  • Engineers tasked with building a car bumper need high-quality plastic that is readily available. They found the material polycar
    13·2 answers
  • An electron is released from rest in a uniform electric field and accelerates to the east at a rate of 4x106m/s2. What is the ma
    9·1 answer
  • Give three examples of properties of elements
    5·2 answers
  • A measurement has high<br> when it is very close to the<br> true value?
    15·1 answer
  • A pendulum consists of a weight tied by a string that is attached to the ceiling. The diagram models the motion of the pendulum
    9·1 answer
  • What thermodynamic property describes the relationship of an equilibrium to temperature?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!