1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GuDViN [60]
2 years ago
13

Electromagnetic radiation consists of discrete packets of kinetic energy called ______, which are characterized by a certain wav

elength and energy level.
Physics
1 answer:
aleksandr82 [10.1K]2 years ago
6 0

Electromagnetic radiation consists of discrete packets of kinetic energy called Photons, which are characterized by a certain wavelength and energy level.

<h3>What are photons? </h3>

The representation by a particle of a quantum of light or any other electromagnetic radiation is called photons. The energy is proportional to the frequency of radiation however it has zero mass. It travels at a constant speed. It is a carrier of energy. When the sun changes the particles into both light and heat, it is a photon. They don’t carry any electrical charge. They are like electric fields traveling through space as shown by Maxwell in his theory.  They can be easily created and destroyed. They are also called light quantum. 

To learn more about photons, visit: 

brainly.com/question/20912241

#SPJ4

You might be interested in
Which of the following is correct concerning the uncontrolled burn phase?
beks73 [17]

The option that is the correct one concerning the uncontrolled burn phase is:

  • The uncontrolled burn phase is characterized by uncontrolled combustion in a cylinder until fuel accumulated during ignition delay is burned.

<h3>What is uncontrolled combustion?</h3>

Uncontrolled Combustion is known to be the the time and place in which a kind of an ignition will stop and it is said to be never  fixed by anything in regards to the compression ignition engine as seen in SI engines.

Note that the four Stages of combustion  are:

1.     Pre-flame combustion

2.     Uncontrolled combustion

3.     Controlled combustion and

4.     After burning

Hence, The uncontrolled burn phase is characterized by uncontrolled combustion in a cylinder until fuel accumulated during ignition delay is burned as all the fuel need to burn out.

Learn more about burn phase from

brainly.com/question/14414049

#SPJ1

7 0
2 years ago
The speed of sound in room temperature (20°C) air is 343 m/s; in room temperature helium, it is 1010 m/s. The fundamental freque
Lera25 [3.4K]

Answer: f = 927.55Hz

Explanation: Since the the tube is open-closed, the length of air and the wavelength of sound passing through the tube is given below

L = λ/4 where λ = wavelength.

speed of sound in air = v = 343m/s.

fundamental frequency of open closed tube = 315Hz

λ = 4L.

v = fλ

343 = 315 * 4L

343 = 1260 * L

L = 343/ 1260

L = 0.27m

In the same tube of length L = 0.27m but different medium ( helium), the speed of sound is 1010m/s.

The length of tube and wavelength are related by the formulae below

L = λ/4, λ=4L

λ = 4 * 0.27

λ = 1.087m.

v = fλ

1010 = f * 1.087

f = 1010/1.807

f = 927.55Hz

4 0
3 years ago
A 20 KeV electron emits two bremsstrahlung photons as it is being brought to rest in two successive decelerations. The wavelengt
Degger [83]

Answer:

λ₁ = 87.5 10⁻¹² m ,  λ₂ =  2.175 10⁻¹⁰ m,    E₂ = 5.8 10³ eV

Explanation:

In this case you can use the law of conservation of energy, all the energy of the electron is converted into energized emitted photons

Let's reduce to the SI system

          E₀ = 20 10³ eV (1.6 10⁻¹⁹ J / 1eV) = 3.2 10⁻¹⁵ J

          Δλ = 1.30 A = 0.13 nm = 0.13 10⁻⁹ m

          Ef = E₁ + E₂

         E₀ = Ef

         E₀ = E₁ + E₂

The energy can be found with the Planck equation

          E = h f

          c = λ f

          f = c / λ

          E = hc / λ

They indicate that the wavelength of the second photon is

 

           λ₂ =  λ₁ +0.130 10⁻⁹

We replace

           E₀ = hv / λ₁ + hc / ( λ₁ + 0.130 10⁺⁹)

           E₀ / hv = 1 / λ₁ + 1 / ( λ₁ + 0.13 10⁻⁹)

          3.2 10⁻¹⁵ / (6.63 10⁻³⁴ 3 10⁸) = ( λ₁ + 0.13 10⁻⁹ +  λ₁) /  λ₁ ( λ₁ + 0.13 10⁻⁹)

          1.6 10¹⁰ ( λ₁² +0.13 10⁻⁹  λ₁) = 2  λ₁ + 0.13 10⁻⁹

           λ₁² + 0.13 10⁻⁹  λ₁ = 1.25 10⁻¹⁰  λ₁ + 8.125 10⁻²¹

            λ₁² + 0.005 10⁻⁹  λ₁ = 8.125 10⁻²¹

            λ₁² + 5 10⁻¹²  λ₁ - 8.125 10⁻²¹ = 0

Let's solve the second degree equation

            λ₁ = [-5 10⁻¹² ±√((5 10⁻¹²)² + 4 8.125 10⁻²¹)] / 2

    λ₁ = [-5 10⁻¹² ±√(25 10⁻²⁴ +32.5 10⁻²¹)] / 2 = [-5 10⁻¹² ±√ (32525 10⁻²⁴)] / 2

             λ₁ = [-5 10⁻¹² ± 180 10⁻¹²] / 2

            λ₁ = 87.5 10⁻¹² m

             λ₂ = -92.5 10⁻¹² m

We take the positive wavelength

The wavelength of the photons is

            λ₁ = 87.5 10⁻¹² m

            λ₂ =  λ₁ + 0.13 10⁻⁹

             λ₂ = 87.5 10⁻¹² + 0.13 10⁻⁹

             λ₂ = 0.2175 10⁻⁹ m = 2.175 10⁻¹⁰ m

The energy after the first deceleration is

            E₂ = E₀ –E₁

            E₂ = E₀ –hc / λ₁

            E₂ = 3.2 10⁻¹⁵ - 6.63 10⁺³⁴ 3 10⁸ / 87.5 10⁻¹²

            E₂ = 3.2 10⁻¹⁵ - 2.27 10⁻¹⁵

             E₂ = 0.93 10⁻¹⁵ J

             E₂ = 0.93 10⁻¹⁵ J (1 eV / 1.6 10⁻¹⁹ J)

             E₂ = 5.8 10³ eV

7 0
3 years ago
Billiard ball A (0.35 kg) is struck such that it moves at 10 m/s toward a second identical ball (Ball B) initially at rest. Afte
timurjin [86]

Answer:

Explanation:

We shall apply law of conservation of momentum during the collision of ball A and B .

Total momentum before collision of A and B = .35 x 10 = 3.5 kg m/s

Let the velocity of B after collision be v .

Total momentum after collision  = .35 x 2 + .35v

According to law of conservation of momentum

.35 x 2 + .35v  = 3.5

.35 v = 2.8

v = 8 m /s .

The direction of B will be same as direction of A .

3 0
3 years ago
if 100 kilojoules of energy is used to heat 500 grams of water what is the temperature change of the water​
Serjik [45]

Answer:

47.8 °C

Explanation:

Use the heat equation:

q = mCΔT

where q is the heat absorbed/lost,

m is the mass of water,

C is the specific heat capacity,

and ΔT is the change in temperature.

Here, q = 100 kJ, m = 0.5 kg, and C = 4.184 kJ/kg/°C.

100 kJ = (0.5 kg) (4.184 kJ/kg/°C) ΔT

ΔT = 47.8 °C

6 0
3 years ago
Other questions:
  • A mover hoists a 50 kg box from the ground to a height of 2 m. What was the change in the box's energy
    11·1 answer
  • Calculate the kinetic energy of a .30 kg ball thrown at a velocity of 96.6 m/hr in J.
    9·1 answer
  • If a car accelerates at a constant rate of 3m/s^2, what is the velocity of the car after 4 seconds
    11·2 answers
  • The force you have to overcome to start an object moving is _____
    8·1 answer
  • A bullet is fired vertically into a 1.40 kg block of wood at rest directly above it. if the bullet has a mass of 29.0 g and a sp
    10·1 answer
  • (a) What is the sum of the following four vectors in unit-vector notation? For that sum, what are (b) the magnitude, (c) the ang
    14·1 answer
  • Over a time interval of 1.71 years, the velocity of a planet orbiting a distant star reverses direction, changing from +17.3 km/
    14·1 answer
  • An 80-kg skater is coasting at a velocity of 6 m/s. She sees a small child in her way and picks him up as she skates by. Her vel
    11·1 answer
  • The waves produced on the earth’s surface is called
    7·2 answers
  • What’s better csp or pv ?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!