Answer:
See the answers below.
Explanation:
We can solve both problems using Newton's second law, which tells us that the sum of forces on a body is equal to the product of mass by acceleration.
∑F =m*a
where:
F = force [N] (units of newtons)
m = mass = 1000 [kg]
a = acceleration = 3 [m/s²]
![F = 1000*3\\F=3000[N]](https://tex.z-dn.net/?f=F%20%3D%201000%2A3%5C%5CF%3D3000%5BN%5D)
And the weight of any body can be calculated by means of the mass product by gravitational acceleration.
![W=m*g\\W=1000*9.81\\W=9810 [N]](https://tex.z-dn.net/?f=W%3Dm%2Ag%5C%5CW%3D1000%2A9.81%5C%5CW%3D9810%20%5BN%5D)
Get your numbers gathered up and solve the problem in the ordered step
Answer:
a = -0.33 m/s² k^
Direction: negative
Explanation:
From Newton's law of motion, we know that;
F = ma
Now, from magnetic fields, we know that;. F = qVB
Thus;
ma = qVB
Where;
m is mass
a is acceleration
q is charge
V is velocity
B is magnetic field
We are given;
m = 1.81 × 10^(−3) kg
q = 1.22 × 10 ^(−8) C
V = (3.00 × 10⁴ m/s) ȷ^.
B = (1.63T) ı^ + (0.980T) ȷ^
Thus, since we are looking for acceleration, from, ma = qVB; let's make a the subject;
a = qVB/m
a = [(1.22 × 10 ^(−8)) × (3.00 × 10⁴)ȷ^ × ((1.63T) ı^ + (0.980T) ȷ^)]/(1.81 × 10^(−3))
From vector multiplication, ȷ^ × ȷ^ = 0 and ȷ^ × i^ = -k^
Thus;
a = -0.33 m/s² k^
Answer:The sun, earth, and moon are held together by gravity, and they interact in lots of ways.
- The tides are another interaction in the sun-earth-moon system. The tides happen because the moon and sun pull on the oceans, causing them to rise and fall each day. The moon has a bigger effect than the sun because it is closer.