Answer: -31.36 m/s
Explanation:
This is a problem of motion in one direction (specifically vertical motion), and the equation that best fulfills this approach is:
(1)
Where:
is the final velocity of the supply bag
is the initial velocity of the supply bag (we know it is zero because we are told it was "dropped", this means it goes to ground in free fall)
is the acceleration due gravity (the negtive sign indicates the gravity is downwards, in the direction of the center of the Earth)
is the time
Knowing this, let's solve (1):
(2)
Finally:
Note the negative sign is because the direction of the bag is downwards as well.
The tension in the string with friction would be the biggest because of the involvement of the force of gravity. This would result in that the friction force that is acting on the system. There is no friction in the frictionless system, and only the force of gravity is relevant.
Answer:
Dynamic flexibility
Explanation:
Dynamic flexibility can be generally defined as the ability of the body muscles and joints to move in full range of motion. High flexibility in these joints and muscles leads to the decreasing pain and injury in different parts of the body.
Proper warm up exercises are needed to be carried out that involves both the combination of controlling movements and stretching of the body, and this directly enhances the dynamic flexibility of the body.
The athletes and sports persons possesses a good dynamic flexibility of their body as they carry our different types of body exercises.
Answer:
I believe the answer is Plasma
Water is more dense then air so it sorta holds the rock as it sinks