Answer:
A figure skater doing a double axle
The swing of a baseball bat
The leverage on a hockey stick
hope it helps
Positioning your Slinky along any direction different from its initial position will affect your reading, because there will be change in the magnetic field.
<h3>Effect of magnet on Slinky</h3>
If the Slinky is made of an iron alloy, it can be magnetized by itself. Moving the Slinky around can cause a change in the magnetic field, even if no current is flowing.
When there is a change in the magnetic field, the reading changes.
At any point, you change the orientation of the Slinky, you will need to zero the reading or adjust the Slinky back to its initial position, even if the sensor does not move.
Thus, Positioning your Slinky along any direction that is different to its initial position will affect your reading because there will be change in the magnetic field.
Learn more about magnetic field here: brainly.com/question/7802337
<span>P = energy/t = 0.0025/1E-8 = 250000 W
I(ave) = P/A = 250000/(pi*0.425E-3^2) = 4.4056732E11 W/m^2
I(peak) = 2I(ave) = 8.8113463E11 W/m^2
Electric field E = sqrt(I(peak)*Z0) = 1.8219499E7 V/m, where
free-space impedance Z0 = sqrt(µ0/e0) = 376.73031 ohms</span>
To solve the exercise it is necessary to take into account the concepts of wavelength as a function of speed.
From the definition we know that the wavelength is described under the equation,

Where,
c = Speed of light (vacuum)
f = frequency
Our values are,


Replacing we have,



<em>Therefore the wavelength of this wave is
</em>