Answer:
U2 = 47.38m/s = initial velocity of B before impact
Explanation:
An example of the diagram is shown in the attached file because of missing angle of direction in the question
Mass A, B are mass of cars
A = 1965
B =1245
U1 = initial velocity of A = 52km/hr
U2 = initial velocity of B
V = common final velocity of two cars
BU2 = (A + B)*V sin ¤ ...eq1 y plane
AU1 = (A + B) *V cos ¤ ....equ 2plane
From equ 2
V = AU1/(A + B)*cos ¤
Substitute V into equation 1
We have
U2 = (AU1/B)tan ¤ where ¤ = angle of direction which is taken to be 30°
Substitute all parameters to get
U2 = (1965/1245)*52 * tan 30°
U2 = 47.38m/s
Answer:
The force will be zero
Explanation:
Due to the symmetric location of the +2μC charges the forces the excert over the +5μC charge will cancel each other resulting in a net force with a magnitude of zero.However in this case it would be an unstable equilibrium, very vulnerable to a kind of bucking. If the central charge is not perfectly centered on the vertical axis the forces will have components in that axis that will add together instead of canceling each other.
Answer:
7.07 hours
Explanation:
divide the distance by the speed
so in this case, divide 672 by 95