(6) Wagon B is at rest so it has no momentum at the start. If <em>v</em> is the velocity of the wagons locked together, then
(140 kg) (15 m/s) = (140 kg + 200 kg) <em>v</em>
==> <em>v</em> ≈ 6.2 m/s
(7) False. If you double the time it takes to perform the same amount of work, then you <u>halve</u> the power output:
<em>E</em> <em>/</em> (2<em>t </em>) = 1/2 × <em>E/t</em> = 1/2 <em>P</em>
<em />
That is because it is impossible to create a law for the behavior of every single different gas, so creating laws for an ideal gas helps us understand the basic nature of gasses which might or might not differ slightly or a lot. By understanding how an ideal gas works, we can understand how a normal gas works.
Initial speed = 56mph
Final speed = 35mph
Time taken = 6.7seconds...
Converting the time to hour.. Divide by 3600..
= 6.7/3600
=0.00186hour..
Acceleration = v-u/t
a = 35-56/0.00186
a = -11283.6mph²
The negative sign shows that it decelerated...
V² = u²+2as
(35)² = (56)² + 2×-11283.6×s
Where s is the distance covered within that time...
1225 = 3136 - 22567.2s
22567.2s = 3136-1225
22567.2s = 1911
S = 1911/22567.2
S = 0.08468miles...
But at the end of the question we were made to understand that 1miles = 5280ft
Therefore 0.08468miles = (0.08468×5280)ft
= 447. 11feets...
Which is approximately 447ft.....
Hope this helped.... ?
Answer:
The angular magnification is 
Explanation:
From the question we are told
The focal length is 
The near point is 
The angular magnification is mathematically represented as

Substituting values

If it is GAINING mass, the kinetic energy increases because it's still moving. If it stopped, it would then become potential energy.
yw XD
(just answered the same question just different user)