Something that is special to you or event that means alot to you
Answer:
this should help *not a virus
Explanation:
https://kidshealth.org/en/teens/digestive-system.html
Answer:

Explanation:
Hello there!
Unfortunately, the question is not given in the question; however, it is possible for us to compute the equilibrium constant as the problem is providing the concentrations at equilibrium. Thus, we first set up the equilibrium expression as products/reactants:
![K=\frac{[NO_2]^2}{[NO]^2[O_2]}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BNO%5D%5E2%5BO_2%5D%7D)
Then, we plug in the concentrations at equilibrium to obtain the equilibrium constant as follows:

In addition, we can infer this is a reaction that predominantly tends to the product (NO2) as K>>>>1.
Best regards!
Vitamin K and potassium are essential micronutrients the body needs to develop and function properly. The two share some things in common, but they’re not the same.
Each has a unique set of properties and purposes. Unlike vitamin K, potassium is not a vitamin. Rather, it’s a mineral.
On the periodic table, the chemical symbol for potassium is the letter K. Thus, people sometimes confuse potassium with vitamin K.
This article highlights some of the main similarities and differences between vitamin K and potassium.
Answer:
The particles that compose a gas are so small compared to the distances between them that the volume of the individual particles can be assumed to be negligible.
Explanation:
This is a postulate of the Kinetic Molecular Theory.
A is wrong. KMT assumes the that the volume of the particles is negligible.
B is wrong. KMT assumes that the distance between the particles is muck greater than their size.
D is wrong. It takes the large distances as a fact. KMT uses this as an assumption.