The answer is c.diffusion.
Diffusion is the movement of ions, molecules or atoms form high concentration to low concentration across the membrane without the need of any energy or any membrane gates. The oxygen enters the alveoli will be dissolved in the water vapor that is present on the wall of the alveoli and will diffuse directly to the blood across the alveolar membrane.
Bc they dooooooooooooooooooo
Answer:
0.56 g
Explanation:
<em>A chemist determines by measurements that 0.020 moles of nitrogen gas participate in a chemical reaction. Calculate the mass of nitrogen gas that participates.</em>
Step 1: Given data
Moles of nitrogen gas (n): 0.020 mol
Step 2: Calculate the molar mass (M) of nitrogen gas
Molecular nitrogen is a gas formed by diatomic molecules, whose chemical formula is N₂. Its molar mass is:
M(N₂) = 2 × M(N) = 2 × 14.01 g/mol = 28.02 g/mol
Step 3: Calculate the mass (m) corresponding to 0 0.020 moles of nitrogen gas
We will use the following expression.
m = n × M
m = 0.020 mol × 28.02 g/mol
m = 0.56 g
Answer: Option (d) is the correct answer.
Explanation:
Electronegativity value of hydrogen is 2.2.
Electronegativity value of chlorine is 3.16.
Electronegativity value of carbon is 2.55.
Electronegativity value of oxygen is 3.44.
Electronegativity value of nitrogen is 3.04.
Electronegativity value of sodium is 0.93.
Electronegativity value of iodine is 2.66.
Therefore, calculate the electronegativity difference between the bonded atoms as follows.
- Electronegativity difference of HCl = Electronegativity value of chlorine - electronegativity value of hydrogen
= 3.16 - 2.2
= 0.96
- Electronegativity difference of CO = Electronegativity value of oxygen - electronegativity value of carbon
= 3.44 - 2.55
= 0.89
- Electronegativity difference of
= Electronegativity value of nitrogen - electronegativity value of nitrogen
= 3.04 - 3.04
= 0
- Electronegativity difference of NaI = Electronegativity value of iodine - electronegativity value of sodium
= 2.66 - 0.93
= 1.73
So, we can see that highest electronegativity difference is 1.73 and it is shown by NaI molecule.
Thus, we can conclude that a group 1 alkali metal bonded to iodide, such as NaI has the greatest electronegativity difference between the bonded atoms.
Answer:
See explaination
Explanation:
The Cys3-cys97 and cys21-cys142 disulfides restrict the unfolded state of lysozyme enzyme to a class of more compact structures with a less exposed hydrophobic surface, compared to the unfolded states of reduced/non-crosslinked lysozyme. there are 2 major factors which lead to the stabilization of lysozyme due to disulfide bonds-
1- increase in the loop size due to the formation of disulfide bonds that leads to an increase in the even entropic effect.
2- the region formed should be flexible. the strain energy due to the formation of the disulfide bond is lower.
cys21-cys142 has a higher Tm than the cys3-cys97 because it involves flexible parts of the molecule. 21 and 142 residues are located on opposite sides of the active-site cleft where significant hinge-bending motion is seen. this introduces minimal strain in the protein.