(2.03x10^22)/(6.02x10^23) = .033721 mol Li
I hope this helps, if not, i am sorry
<span>When M(OH)2 dissolves we have
M(OH)2 which produces M2+ and 2OHâ’
pH + pOH=14
At ph =7; we have
7+pOH=14
pOH=14â’7 = 7
Then [OHâ’]=10^(â’pOH)
[OH-] = 10^(-7) = 1* 10^(-7)
At ph = 10. We have,
pOH = 4. And [OH-] = 10^(-4) = 1 * 10^(-4)
Finally ph = 14. We have, pOH = 0
And then [OH-] = 10^(-0) -----anything raised to zero power is 1, but (-0)...
So [OH-] = 1</span>
Answer:
MIXTURE
Explanation:
A mixture is a substance composed of a combination of other different substances. These component(s) of a mixture are physically combined, meaning that there is no chemical linkage between the individual components/constituents of a mixture.
This is the case of the gravel described in this question. The components of gravel can be separated using physical means because they are not chemically bonded to one another, hence, no chemical reactions are needed to separate different parts of gravel into pure substances. This makes gravel a MIXTURE.
Tetrahedral arrangement is resulted upon mixing one s and three p atomic orbitals, resulting in 4 hybridized
orbitals →
hybridization.
<h3>What is
orbital hybridization?</h3>
In the context of valence bond theory, orbital hybridization (or hybridisation) refers to the idea of combining atomic orbitals to create new hybrid orbitals (with energies, forms, etc., distinct from the component atomic orbitals) suited for the pairing of electrons to form chemical bonds.
For instance, the valence-shell s orbital joins with three valence-shell p orbitals to generate four equivalent sp3 mixes that are arranged in a tetrahedral configuration around the carbon atom to connect to four distinct atoms.
Hybrid orbitals are symmetrically arranged in space and are helpful in the explanation of molecular geometry and atomic bonding characteristics. Usually, atomic orbitals with similar energies are combined to form hybrid orbitals.
Learn more about Hybridization
brainly.com/question/22765530
#SPJ4
The answer is 2 electrons.
The electron configuration of calcium is 2:8:8:2
Calcium has two electrons in its outermost shell. These are its valence electrons and are the ones used in bonding with other elements. Valence electrons of an atom are those electrons that are in its outer energy shell or that are available for bonding.
Calcium is a metal. When metals react with non-metals, electrons are transferred from the metal atoms to the non-metal atoms forming ions. The resulting compound is known as an ionic compound.
For example, when calcium metal reacts with chlorine gas, calcium gives up its two valence electrons and Chlorine accepts them resulting in a new substance called calcium chloride in which the two elements have ended up forming ionic bonds.