Ask Barry Allen he’s the faster man alive
The solution would
be like this for this specific problem:
<span>
F=−</span>k∗x∗<span>q∗</span>Q<span>/(</span>+)<span>F−≈</span><span><span><span>k∗x∗<span>q∗</span>Q</span><span>/R3</span></span>[(</span>1−<span><span>3/2</span><span><span>*x2</span><span>/R3</span></span>]
</span><span>F=−</span><span><span>k∗x∗<span>q∗/</span>Q</span><span>R<span>3
</span></span></span><span>F=</span><span>ma
</span>−<span><span><span><span>k∗<span>q∗</span>Q</span><span>/R3</span></span>*</span>x</span>=<span>ma
</span>−k∗x=m∗<span>a
a</span>==<span><span><span>ω2</span>x
</span>ω</span><span>=(</span>k/<span>m<span>)<span><span>1/</span><span>2
</span></span></span></span>ω<span>=(</span><span>kqQ</span>/<span><span>R3</span><span>)<span><span>1/</span>2
</span></span></span>
<span>I am hoping that
this answer has satisfied your query and it will be able to help you in your
endeavor, and if you would like, feel free to ask another question.</span>
The so-called "velocity-time" graph is actually a "speed-time" graph. At any point
on it, the 'x'-coordinate is a time, and the 'y'-coordinate is the speed at that time.
'Velocity' is a speed AND a direction. Without a direction, you do not have a velocity,
and these graphs never show the direction of the motion. It seems to me that it would be
pretty tough to draw a graph that shows the direction of motion at every instant of time,
so my take is that you'll never see a true "velocity-time" graph.
At best, it would need a second line on it, whose 'y'-coordinate referred to a second
axis, calibrated in angle and representing the 'bearing' or 'heading' of the motion at
each instant. The graph of uniform circular motion, for example, would have a straight
horizontal line for speed, and a 'sawtooth' wave for direction.
Answer:
It will take both pumps 3.08 hours to fill the tank working together.
Explanation:
Pump A can fill the tank in 5 hours. Assuming that the pump gives out a steady flow of water, in one hour, pump A can fill 1/5th of the tank. Similarly, pump B in an hour, fills up 1/8th of the tank.
We must add up these two values, in order to find how much of the tank the two pumps can fill up together in one hour.
1/5 +1/8 =13/40
So 13/40 of the tank is filled in an hour. We need to find how many hours it will take for the entire tank to be filled. To do so, divide 40 by 13. This gives:
3.08 hours to fill up the tank.
Answer:
i) acceleration from B to D is 0, because the velocity is constant (stays the same)
ii) whatever units of distathat might be, we can calculate the number:
for 4 time-steps (2 to 6) the velocity is 6 per time step, that makes 24 distance units in these 4 time steps. it's the same the area underneath the graph.
there is also the vertical line from 0 to 2. we can calculate that distance like the area of a triangle with 2*6 / 2 = 6
the total distance from 0 to D is therefore 30